

INTERNATIONAL AIR TRANSPORT ASSOCIATION

 2003, 2013 IATA All Rights Reserved
The information contained herein is the property of IATA.

Common Use Self Service (CUSS)

Technical Specification

Revision: 1.3
Date: June 2013

 Revision Table

Revision 1.3, June 2013 i

 Revision Table

Revision Date Change

0.5 2003-04-25 Initial Release

1.0 2003-05-16 Updated the Preface; added Index; reformatted document.

1.2 2009-03-23 CUSS 1.2 submitted to IATA CUSSMG (now PEMG)

1.2 2009-05-25 Ratified by IATA for publication

1.3 2013-05-01 CUSS 1.3 Technical Specification finalized

1.3 2013-06-17 CUSS 1.3 Technical Specification published

 Table of Contents

Revision 1.3, June 2013 1

Table of Contents

TABLE OF CONTENTS .. 1

LIST OF FIGURES .. 10

INTRODUCTION AND PREFACE .. 11

AIRPORT COMMON USE: CUSS AND CUPPS .. 16

ABOUT CUSS 1.3 AND DOCUMENT CHANGES .. 17

ABOUT CUSS 1.2 AND DOCUMENT CHANGES .. 20

CH 1: ARCHITECTURE OVERVIEW .. 23

1.1 CUSS Principles .. 23

1.2 CUSS Kiosk Architecture .. 24

1.3 CUSS Platform Hardware ... 25

1.4 CUSS Platform Software ... 25

1.4.1 Platform Software Environment ... 25

1.4.2 CUSS Application Manager (CAM) .. 26

1.4.2.1 Event Dispatcher ... 26

1.4.2.2 Environment & Component Repository 27

1.4.2.3 Access Control ... 27

1.4.3 System Manager Interface (SMI) ... 27

1.4.4 Common Launch Application (CLA) ... 28

1.4.5 Device Components... 28

1.5 Kiosk Application (AL application) ... 29

1.6 Complete CUSS Environment ... 30

1.7 Data Security Considerations .. 31

1.7.1 Requirements for CUSS platforms ... 33

1.7.2 Requirements for CUSS applications... 33

CH 2: INTERFACE OVERVIEW .. 35

2.1 Interface Communication Layer .. 35

2.1.1 Local vs. Remote Interface Connections ... 35

2.1.2 CORBA TCP/IP ports used by CUSS platform and applications 36

2.2 Application Architecture Options ... 37

2.3 Interface Directives and Events ... 38

2.3.1 Directives ... 39

2.3.2 Events .. 39

2.3.2.1 Event Cause .. 39

2.3.2.2 Event Source ... 40

2.3.2.3 Event Modes .. 40

 Table of Contents

Revision 1.3, June 2013 2

2.3.2.4 Event Categories ... 40

2.3.2.5 Event Types ... 41

2.3.2.6 Event Codes .. 41

2.3.2.7 Status Codes ... 41

2.3.2.8 Event Listener Mechanism... 41

2.3.2.9 Event Processing ... 42

2.4 Application Manager Interface (AMI) ... 43

2.4.1 Application State Descriptions ... 43

2.4.1.1 STOPPED State .. 43

2.4.1.2 INITIALIZE State .. 44

2.4.1.3 UNAVAILABLE State ... 45

2.4.1.4 AVAILABLE State .. 45

2.4.1.5 ACTIVE State .. 46

2.4.1.6 SUSPENDED State ... 46

2.4.1.7 DISABLED State .. 47

2.4.2 Application State Diagram ... 47

2.4.3 Application State Transition Description .. 48

2.4.3.1 Load Transition (STOPPED to INITIALIZE or DISABLED to
INITIALIZE) .. 48

2.4.3.2 Check Transition (INITIALIZE to UNAVAILABLE or AVAILABLE
to UNAVAILABLE or ACTIVE to UNAVAILABLE) 49

2.4.3.3 Wait Transition (UNAVAILABLE to AVAILABLE or ACTIVE to
AVAILABLE) ... 49

2.4.3.4 Activate Transition (AVAILABLE to ACTIVE or ACTIVE to
ACTIVE) ... 49

2.4.3.5 Suspend Transition (to SUPSENDED) 49

2.4.3.6 Resume Transition (back to pre-suspended state) 49

2.4.3.7 Disable Transition (to DISABLED) ... 50

2.4.3.8 Stop Transition (to STOPPED) .. 50

2.4.3.9 Restart Transition .. 50

2.4.3.10 Periodic/Automatic restart of the application 50

2.4.4 Modes of Operation for applications .. 52

2.4.4.1 Media-off-roller (MOR) ... 52

2.4.4.2 Multi-application Mode ... 53

2.4.4.3 Single-application Mode (with Common Launch) 54

2.4.4.4 Dedicated or Persistent Single-application Mode 54

2.4.4.5 Application Transfer Mode ... 56

2.4.4.6 Multiple Application Brands.. 58

2.4.4.7 One Application Instance per Process 58

2.4.5 Special State Transitions and Notification Strings 60

2.4.5.1 ACTIVE Transition Notification String 60

2.4.5.2 ACTIVE Brand Notification... 60

2.4.5.3 ACTIVE Language Notification .. 61

2.4.5.4 ACTIVE Dedicated Single-app Mode Notification 61

2.4.5.5 ACTIVE Application Transfer Notification 62

2.4.5.6 Application Status “Reason” Indicator 63

 Table of Contents

Revision 1.3, June 2013 3

2.4.5.7 Application Status “Transaction” Indicator 64

2.4.5.8 Automed Remote Update VERSION_EXPLANATION 65

2.4.5.9 Automated Remote Update UPDATE_REQUEST 66

2.5 System Manager Interface (SMI) .. 69

2.5.1 SP System Manager .. 69

2.5.2 AL System Manager .. 69

2.6 Device Component Interface (DCI) ... 69

2.6.1 Virtual Component Concept ... 70

2.6.2 Some Device Component Interface Rules ... 72

2.6.3 Device Component State Description .. 74

2.6.4 Device Component State Diagram .. 75

2.6.5 Device Component State Transition Description 76

CH 3: INTERFACE DEFINITION ... 77

3.1 Data Structures Definitions.. 78

3.1.1 Reference .. 78

3.1.2 Name ... 78

3.1.3 Timeout .. 78

3.1.4 Application Token .. 78

3.1.5 Correlation ... 78

3.1.6 Vcomp Reference .. 78

3.1.7 Kiosk Location ... 79

3.1.8 Kiosk GPS Coordinates ... 79

3.1.9 Data ... 79

3.1.10 Kiosk Application ID ... 80

3.1.11 Event.. 81

3.1.12 Event List Selection ... 82

3.1.13 Event Code Selection .. 82

3.1.14 Event Type Selection ... 83

3.1.15 Component Selection... 84

3.1.16 Event category Selection ... 84

3.2 Components Definition .. 85

3.2.1 Component Classes... 85

3.2.2 Virtual Component Definitions ... 86

3.2.3 Components that depend on a linked Component 88

3.3 Management Interface (MIF) Directives .. 89

3.3.1 level ... 89

3.3.1.1 Platform Version Information ... 90

3.3.1.2 Platform Location Information .. 91

3.3.2 components ... 91

3.3.3 generateEvent ... 93

3.3.4 queryEvent ... 93

3.3.5 registerEvent .. 94

3.3.6 waitEvent ... 94

3.4 Application Manager Interface (AMI) Directives .. 96

3.4.1 initRequest ... 96

 Table of Contents

Revision 1.3, June 2013 4

3.4.2 notify .. 96

3.5 System Manager Interface (SMI) Directives .. 97

3.5.1 load .. 97

3.5.2 resume ... 97

3.5.3 resumeAll ... 98

3.5.4 stop .. 98

3.5.5 stopAll .. 98

3.5.6 suspend ... 98

3.5.7 suspendAll ... 99

3.6 Device Component Interface (DCI) Directives ... 100

3.6.1 acquire ... 100

3.6.2 disable ... 101

3.6.3 enable .. 102

3.6.4 query .. 104

3.6.5 release ... 106

3.6.6 setup .. 106

3.6.7 test ... 108

3.6.8 Data Directives .. 109

3.6.8.1 receive ... 109

3.6.8.2 send ... 111

3.6.9 Document Directives .. 113

3.6.9.1 offer ... 113

3.6.9.2 retain .. 116

3.6.10 Event Directives ... 117

3.6.10.1 cancel .. 117

3.6.11 Media High/Full for Dispenser Components .. 117

3.7 Event Listener Interface (ELI) .. 119

3.7.1 callback Directive ... 120

3.7.2 Device Components Events ... 120

3.7.3 CUSS Application Manager Events ... 124

3.8 Media Device Behavior and Event Sequence ... 131

3.8.1 Dip Media Reader .. 132

3.8.2 Motorized Media Reader .. 132

3.8.3 Swipe Media Reader.. 132

CH 4: REAL COMPONENT CHARACTERISTICS .. 134

4.1 Mandatory Components – All Kiosks .. 134

4.1.1 Boarding Pass Printer (AEA) ... 135

4.1.2 Clock .. 136

4.1.3 CUSS ... 137

4.1.4 Enclosure ... 137

4.1.5 Display ... 138

4.1.6 Hard Disk ... 138

4.1.7 Magnetic Card Reader ... 138

4.1.8 Network .. 139

4.1.9 System ... 139

 Table of Contents

Revision 1.3, June 2013 5

4.1.10 Touch Screen Overlay ... 139

4.1.11 Barcode Scanner with 2D support ... 140

4.1.12 Self Bag Drop device ... 140

4.2 Recommended Components ... 141

4.2.1 ATB2 Device .. 141

4.2.2 Bag Tag Printer .. 142

4.2.3 Door Sensor ... 143

4.2.4 Hardware Watch Dog... 143

4.2.5 Passport Reader .. 143

4.2.6 Receipt Printer ... 144

4.2.7 UPS ... 145

4.3 Optional Components ... 145

CH 5: VIRTUAL COMPONENT CHARACTERISTICS ... 148

5.1 Common Characteristics ... 151

5.1.1 Bin Settings .. 151

5.1.2 ComponentFonts ... 151

5.1.3 IOMode .. 151

5.1.3.1 setIOMode ... 152

5.1.4 Location ... 152

5.1.5 Manufacturer .. 152

5.1.6 MediaType ... 152

5.1.7 MediaTypeList ... 153

5.2 Application Characteristics .. 153

5.3 Capture Characteristics ... 153

5.4 DataInput Characteristics .. 153

5.5 DataOutput Characteristics ... 153

5.6 Dispenser Characteristics ... 154

5.7 Display Characteristics .. 154

5.7.1 setScreenResolution .. 155

5.8 Feeder Characteristics .. 155

5.9 MediaInput Characteristics .. 155

5.10 MediaOutput Characteristics ... 156

5.10.1 setPrintOrientation ... 156

5.11 Network Characteristics .. 157

5.12 Storage Characteristics ... 157

5.13 UserInput Characteristics .. 157

5.14 UserOutput Characteristics ... 157

5.15 Free-form Characteristics Settings .. 157

CH 6: EXTENDED DEVICE & MEDIA TYPE HANDLING.. 161

6.1 Practical and Technical Considerations .. 161

6.2 Identifying an Extended Data Component ... 162

6.2.1 Setting up and Using an Extended Data Component 163

6.3 Sending and Receiving Extended Data ... 164

6.3.1 Obtaining data from an extended MediaInput component 164

 Table of Contents

Revision 1.3, June 2013 6

6.3.2 Sending data to an extended MediaOutput component 164

6.3.3 Support for Validated Data ... 165

6.3.3.1 Validated Data Status Indicators .. 165

6.3.4 Component Model for Extended Devices... 165

6.4 Non-AEA Printing on General Purpose Printers (GPP) 168

6.4.1 Printing using SVG (Scalable Vector Graphics) 168

6.4.2 Printing using Adobe PDF (Portable Document Format) 169

6.4.3 Reverse/2-sided printing on GPPs ... 170

6.4.4 Page margins and printable area ... 172

6.4.5 Receipt Printing and Specialty Document Printing 172

CH 7: REAL DEVICE PROGRAMMING GUIDE .. 174

7.1 List of Figures .. 175

7.2 Simple ATB Printer (AEA Printing Device) .. 176

7.3 ATB/2 with Insertion Slot ... 178

7.4 ATB/2 with Insertion Slot and Escrow ... 182

7.5 ATB/2 with Insertion Slot and Escrow (ins. coupons do not eject into escrow) ... 186

7.6 Simple Baggage Tag Printer ... 189

7.7 Motorized Magnetic Card Reader ... 191

7.8 DIP / Swipe Magnetic Card Reader .. 193

7.9 Magnetic Card Encoder... 195

7.10 Magnetic Card Encoder with Dispenser .. 197

7.11 General Purpose Printer (GPP) ... 199

7.12 DIP / Swipe Passport Reader .. 201

7.13 Barcode Scanner .. 203

7.14 Flatbed Reader ... 205

7.15 RFID/NFC/Contactless Media Reader .. 207

7.16 Integrated Baggage System (Self Bag Drop AEA-SBD) 211

7.16.1 Data Format (DS_TYPES_SBDAEA) .. 213

7.16.2 Data Format (DS_TYPES_RP1745) .. 216

7.16.3 Important Information and Clarifications .. 217

7.16.4 AEA-SBD Command and Control Examples ... 220

7.16.5 Typical Sequence Diagram (AEA-SBD component) 221

7.16.6 Receipt and Heavy Tag Printing .. 222

7.17 Integrated Baggage System Conveyor (CUSS-SBD) .. 223

7.17.1 Device Component Interface Directives Extension 230

7.17.1.1 acquire ... 230

7.17.1.2 backward ... 230

7.17.1.3 cancel .. 231

7.17.1.4 disable ... 232

7.17.1.5 enable .. 232

7.17.1.6 forward ... 233

7.17.1.7 offer ... 234

7.17.1.8 process .. 235

7.17.1.9 query .. 236

7.17.1.1 receive ... 237

 Table of Contents

Revision 1.3, June 2013 7

7.17.1.2 release ... 237

7.17.1.3 send ... 237

7.17.1.4 setup .. 237

7.17.1.5 test ... 238

7.17.2 Data Formats ... 240

7.17.2.1 Bar-Code Scanner (DataInput) .. 240

7.17.2.2 RFID Scanner (DataInput) ... 240

7.17.2.3 RFID Scanner (DataOutput) .. 242

7.17.2.4 Scale (DataInput) ... 243

7.17.2.5 Dimensions (Insertion, Verification and ParkingBelt) 244

7.17.2.6 BSS (DataOutput) .. 244

7.17.3 Notes and Comments on Implementation .. 247

7.17.3.1 Deprecation of the existing CUSS 1.1 Conveyor interface..... 247

7.17.3.2 Weights and Dimensions, and Data Formats......................... 248

7.17.3.3 Detecting and Notification of Bags ... 250

7.17.3.1 Interference, Intrusion and Error Conditions 254

7.17.4 Abandonned Bag and Session Cleanup requirements 258

7.17.5 Receipt and Heavy Tag Printing .. 259

7.17.6 Standard Operations, Behaviour, and Sequence Diagrams 260

7.18 Independent Baggage Scale ... 274

7.18.1 Device Component Interface Directives Extensions 275

7.18.2 Data Format (DS_TYPES_WEIGHT)... 275

7.18.3 Typical Sequence Diagram .. 278

7.19 Generic Payment Device... 279

7.19.1 Data Formats ... 281

7.19.2 Application Responsibilities ... 281

7.19.3 Sequence Diagrams .. 283

7.19.4 Explanation of Schema Fields ... 291

7.19.5 Example Schema Messages ... 294

7.19.6 Non-Payment Magnetic Card Support ... 303

7.20 RFID and e-Passport Readers .. 305

7.21 Accessible Kiosk Interfaces ... 306

CH 8: FOID AND PAYMENT CARD HANDLING ... 307

8.1 Introduction and Summary .. 307

8.2 Definitions and Goals .. 308

8.3 Payment Data Card Definition ... 310

8.4 Payment Data Truncation Rules and Requirements ... 313

8.5 Data Truncation Flow Overview .. 316

8.6 Data Truncation Exclusion List .. 318

8.7 Visual Representation of Truncation Rules ... 319

8.8 Examples of Data Truncation .. 320

8.9 Modifications to the CUSS Card Reader interface .. 321

8.10 Backwards Compatibility of Platforms and Applications 322

8.11 Use Cases and Device Sequence ... 324

8.12 Deferred use of Payment Card Data ... 325

 Table of Contents

Revision 1.3, June 2013 8

8.13 Deployment Guidelines and Instructions ... 326

CH 9: AUTOMATED REMOTE UPDATES (ARU) ... 329

Background ... 329

Business Requirements .. 330

Application ARU via the CUSS Technical Interfaces ... 334

APPX A: RETURN, EVENT AND STATUS CODES 338

Function Return Codes ... 338

Event Codes .. 339

Status Codes ... 342

Data Status Codes .. 345

APPX B: COMPONENT MAPPINGS .. 347

Introduction.. 347

Real Components Mapping ... 347

APPX C: IDL INTERFACE DEFINITION FILES .. 351

types.idl (Type definitions for CUSS) ... 352

comps.idl (Interface to CUSS components)... 359

codes.idl (Definitions of CUSS codes) ... 369

characteristics.idl (Virtual component characteristics) ... 374

CUSS.PAYMENT.XSD (Generic Payment XML messages) 382

CUSS.SBD.XSD (Scales and Self Bag Drop) ... 383

APPX D: AEA PRINTER STANDARD AND USAGE 384

Version of AEA Printer Specification Supported .. 384

PCX Logo Format Specification .. 385

Barcode Orientation .. 386

PDF417 2D Barcode Printing .. 387

Barcode128 subtypes 128A, 128B, 128C ... 388

Multi-document AEA print streams .. 389

Extended code page language support for AEA print streams 390

Restrictions on AEA Commands ... 392

APPX E: TECHNOLOGIES AND STANDARDS ... 393

Introduction.. 393

Interim Changes to the CUSS Technologies and Standards List 394

Software Licensing and Distribution .. 394

The Standard CUSS Java Environment .. 395

The Standard CUSS Browser Environment... 397

Presentation Tools and Libraries ... 399

Kiosk PC System Requirements ... 401

What other Software can an application use? ... 404

Kiosk or Site-Specific Configuration for Applications ... 405

 Table of Contents

Revision 1.3, June 2013 9

Application Technologies at the server .. 405

Technologies used by the platform .. 406

Resource Limits per Application .. 406

APPX F: SELF-CERTIFICATION CRITERIA .. 407

APPX G: PRINTER STOCK AND DOCUMENT TYPES.................................. 408

CUSS 21” standard bag tag schematics ... 409

BoardingPass and Ticket ATB stock layout and perforation .. 410

Different types of BoardingPass and Ticket stock ... 411

Support for Numbered (controlled) documents.. 411

Transfer Type for legacy ATB2 printers ... 412

2-sided Document Printing .. 412

Self Bag Drop (SBD) Heavy Tag Printing .. 413

APPX H: EXTENDED DATA TYPE LIST (DS_TYPES) 415

APPX I: APPLICATION UPDATES AND DISTRIBUTION .. 417

Packaging and Distribution of CUSS Applications... 417

CUSS Certification and Re-Certification Guidelines .. 419

Application Change Definitions ... 419

Application Change Examples (with corresponding level) 420

Platform Change Definitions .. 421

Platform Change Examples (with corresponding level) 422

APPX J: UPGRADING TO A NEW VERSION OF CUSS... 423

Updating Applications for CUSS 1.3 .. 424

Updating Platforms for CUSS 1.3 .. 427

Updating Platforms for CUSS 1.2 .. 428

CUSS 1.0/1.1 Addendum Reference Table ... 430

APPX K: CUSS TECHNICAL SPECIFICATION FILES 432

GLOSSARY OF TERMS ... 435

 List of Figures

Revision 1.3, June 2013 10

List of Figures

Figure 1 Three-Layered CUSS Kiosk Architecture .. 24
Figure 2 Platform Software Environment ... 25

Figure 3 CUSS Application Manager .. 26

Figure 4 Device Components ... 28

Figure 5 Kiosk Application and Associated Components ... 29
Figure 6 The Complete CUSS Environment.. 30
Figure 7 Application Architecture Options .. 38

Figure 8 Alert Vs. Alarm ... 41
Figure 9 Overview of Event Exchange ... 43

Figure 10 Application State Diagram .. 48

Figure 11 ATB2 Device with Escrow, 3 bins with distinct stocks .. 71

Figure 12 Device Component State Diagram (Application View) ... 75

 Introduction & Preface

Revision 1.3, June 2013 11

Introduction and Preface

About This Document
This document describes the IATA CUSS Technical specifications, a standard that allows
multiple airlines to share one physical kiosk to offer self-services to their passengers.
These services include, but not limited to, check-in functionality. The standard also
allows airlines to develop CUSS-compliant applications that are able to run on any kiosk
whose platform is CUSS-compliant.

This specification has been approved by the IATA Passenger Experience Management
Group (PEMG) based on the recommendation of the Common Use Working Group
(CUWG) and the CUSS Technical Solution Group (TSG-CUSS.)

Between releases of the CUSS Technical Specification, corrections and clarifications to
this technical specification are published in a separate errata document. The current
version of that errata document is available from the IATA PEMG Extranet (as described
elsewhere in this document:

IATA_CommonUseSelfService_TechnicalSpec_CUSS_1.3_errata.pdf
CUSS Technical Specification 1.3: Errata and Technologies Updates

Versions of the CUSS Technical Standard
This version of the document defines the CUSS Technical Specification version 1.3, and
replaces all previous versions of this document. It is published in June 2013. As of
version 1.3, the CUSS Technical Specification introduces a version lifecycle policy that
deprecates previous versions of the specification:

1. At any given time, the current TS version and two prior versions remain active

2. When a new TS version is published, the oldest active version remains active for one year

For example, the current version of CUSS-TS is CUSS 1.2. That means that CUSS 1.0, CUSS
1.1 and CUSS 1.2 are valid revisions of the TS. If CUSS 1.3 is published in June 2013, then
CUSS 1.0 will become invalid in June 2014.

 Introduction & Preface

Revision 1.3, June 2013 12

Effective 01 June 2014, the CUSS Technical Specification version 1.0 is deprecated.
Sites that do not comply with version 1.1 or later will no longer be IATA RP1706c
CUSS compliant as of that date.

Version 1.1 will be deprecated one year after the future publication of CUSS Technical
Standard 1.4 (when and if that version is released.)

About IATA
International air transport is one of the most dynamic and fastest-changing industries in
the world. It needs a responsive, forward-looking and universal trade association,
operating at the highest professional standards. IATA is that association.

Originally founded in 1919, IATA brings together approximately 280 airlines, including
the world's largest. Flights by these airlines comprise more than 95 percent of all
international scheduled air traffic.

Since these airlines face a rapidly changing world, they must cooperate in order to offer a
seamless service of the highest possible standard to passengers and cargo shippers. Much
of that cooperation is expressed through IATA, whose mission is to "represent and serve
the airline industry”.

About PEMG and CUWG
IATA's Passenger Experience program addresses the end to end passenger journey from
ticket purchase through to arrival at destination. It comprises a range of projects to
improve the travel experience and help reduce unnecessary operational costs to the
industry. One of the primary delivery channels is self-service options for passengers
where it makes sense. In process areas controlled by government authorities, such as
Security, Immigration and Customs, Passenger Experience will improve the facilitation
of these processes by harmonizing passenger data requirements and enhancing passenger
preparedness to reduce queues and process times.

The main functions of the Management Group are:
• Set direction and policy for all areas within Passenger Experience

• Orovide oversight and governance for the constituent working groups

• Review and approve proposed additions, changes and deletions to Standards
within PEMG and the constituent working groups as well as any future products
and/or PEMG activities

• Submit an annual report of its activities to the JPSC meeting

• Liaise closely with other ATA and IATA Committees impacting on PEMG
Standards

Membership of PEMG is open to IATA & ATA Members, IATA Strategic Partners and
members of Airports Council International (ACI). In addition, membership of the Passenger

 Introduction & Preface

Revision 1.3, June 2013 13

Facilitation Working Group (PFWG) is open to government agencies. To sign up for access to
the IATA PEMG Extranet site, submit your information via this URL:

 https://www2.iata.org/registration/Getemailpage.aspx?siteUrl=PEMG

The Common Use Working Group (CUWG) is part of the IATA Passenger Experience
Management Group. The main functions of the working group are:

• To review and approve proposed additions, changes and deletions to
Common Use standards including RP 1797 & RP 1706 as well as any
future standards relating to products used in the airport common use
environment.

• To submit an annual report of its activities to the Passenger Services
Conference (PSC).

• To liaise closely with other bodies, including the Air Transport
Association (ATA), Airports Council International (ACI) and IATA
Committees impacting on Common Use Standards.

Recommended practices, technical specifications and certification criteria developed by
this group are published in the IATA CUSS Manual (this document) and the IATA
CUPPS Manual – the publications are available on the IATA PEMG Extranet.

 https://extranet2.iata.org/sites/pemg/common-use-wg/default.aspx

Intended Audience
This document is intended to be used by software designers and developers who want to
produce platforms and applications that comply with CUSS standard. Application
developers who are already familiar with the concepts of CUSS may wish to jump
directly to Chapters 7 and 8 (new in CUSS 1.2 and new in CUSS 1.3) for new
information about how to find and use real devices on a CUSS platform.

While this Technical Specification is a document for software practitioners, IATA has
also published a separate Common Use Self-Service implementation guide that provides
more broad information on deploying CUSS at the airport. This document is available at

 http://www.iata.org/whatwedo/stb/cuss/Pages/index.aspx

Organization of This Document
This document is divided in the following chapters and appendices:
Chapter 1 – Architecture Overview, describes the overall CUSS kiosk architecture,
including a general description of a CUSS platform and a CUSS application.

 Introduction & Preface

Revision 1.3, June 2013 14

Chapter 2 – Interface Overview, gives a general overview of the interfaces between a
CUSS application and a CUSS platform.

Chapter 3 – Interface Definition, defines all interfaces used in CUSS, mainly the
Application Manger Interface, the System Manager Interface, the Device Components
Interface, and the Event Listener Interface used by the CUSS platform to communicate
with CUSS applications (kiosk applications and system manager applications).

Chapter 4 – Real Component Characteristics, lists all CUSS real components
(mandatory, recommended, and optional) as well as their hardware and software
characteristics.

Chapter 5 – Virtual Component Characteristics, lists all the characteristics of CUSS
virtual components used to represent the CUSS real components.

Chapter 6 -- Extended Device & Media Type Handling, indicates how new and
extended types of data are handled exchanges by applications and the platform.

Chapter 7 -- Real Device Programming Guide, explains how a CUSS application
developer should interact with common devices in a CUSS environment.

Chapter 8 -- The CUSS FOID Addendum, explains how a CUSS platforms and
applications must request and process sensitive payment card track data.

Chapter 9 -- Application Automatic Remote Updates, indicates the methods and
operational guidelines and application must follow to automatically update itself.

Appendix A – Return, Event, and Status Codes, lists all function return codes, event
codes and status codes used in the CUSS standard.

Appendix B – Component Mappings, includes a table that maps all CUSS real
components into their corresponding CUSS virtual components.

Appendix C – IDL Listings, contains all the CUSS IDL files and schema definitions that
comprise the CUSS standard interfaces.

Appendix D – AEA Standard Profiles, refers to the AEA standards used in CUSS and
provides many clarifications to parts of the AEA specification that are ambiguous.

Appendix E – Presentation Technologies and Standards, lists all the presentation
service technologies that should be supported by CUSS 1.2 platforms.

Appendix F – Self-Certification Criteria , refers to a separate document that includes all
the certification criteria to be satisfied as part of certification of CUSS platforms and
applications.

Appendix G – Printer Stock and Document Types, explains the different types of
documents available on a CUSS kiosk.

Appendix H – Extended Data Type List, enumerates the latest extended DS_TYPES
described in Chapter 6.

Appendix I – Application Updates and Distribution, provides guidelines about how
applications are packaged and updated..

 Introduction & Preface

Revision 1.3, June 2013 15

Appendix J – Upgrading to a new version of CUSS, which discusses the platform and
application changes need to adapt to CUSS 1.3.

Appendix K – The CUSS Technical Specification FIles, which provides a concise list
of the files that comprise the CUSS Technical Specification, and their purpose..

Glossary, includes a glossary for acronyms used through out the document.

Associated Documents
The CUSS technical specifications document is part of the IATA CUSS Manual, which
also includes the following publications by the CUSS Management Group:

• CUSS Interface Defintion Language (IDL) files

• CUSS XML Message schema (XSD) files

• CUSS Certification Document

• CUSS Self-Certification Criteria

• Service Level Agreement Templates

References
The following standard and publications have been referred to in this document:

• AEA – ATB Technical specs- Amended August 2002, 2008, 2009

• AEA – Parametric Baggage Tag Data Concept – August 2002, 2008, 2009

• AEA - Self Service Specifications - August 2001

• AEA2012-2 – Self Bag Drop – March 2013

• EMV – Visa Integrated Circuit Card standard version 1.3.2

o Application Overview
o Card (ICC) Specification
o Terminal Specification

• HTML Specification, version 4.0 or later, by W3C

• IATA Recommended Practices 1706c, 1706d, 1706e, 1720a, 1723

• IATA Resolutions 722c, 722d, 722e

• IATA Resolution 792 (BCBP)

• ISO 7810-7811, 7812, 7816

• ISO 8859-1 Latin 1

• ISO/IEC 10646-1 second edition

• Java™ 2 Platform, Standard Edition, version 1.3.1, by Sun Microsystem

• Java™ 2 Platform, Standard Edition, version 1.5.0, by Sun Microsystems

• Java™ 2 Platform, Standard Edition, version 7, by Oracle

 Introduction & Preface

Revision 1.3, June 2013 16

• Scalable Vector Graphics (SVG), version 1.1 or later, by W3C

• CORBA specifications, version 2.3 or later, by OMG

• Unicode Standard version 3.0.0, by Unicode, Inc.

Participation in the CUSS Technical Standard
The IATA Passenger Experience Management Group maintains an extranet for

Common Use Working Group activities. This extranet portal provides for ongoing
discussion of issues relating to the CUSS Technical Standard and future versions. To
access the PEMG website, register at:

https://www2.iata.org/registration/Getemailpage.aspx?siteUrl=PEMG

IATA Members and Partners should contact their IATA representative to understand how
they can become involved with the Passenger Experience Management Group and
associated subcommittees, including the CUSS Technical Solution Group.

Airport Common Use: CUSS and CUPPS

IATA current has defined two standards for Common Use airports. The first is Common
Use Self Service (CUSS) which is designed for self-service kiosk operations and creating
applications used directly by airline customers. CUSS has been in production since 2003
and is an IATA standard. This document is its Technical Specification.

The second is Common Use Passenger Processing Systems (CUPPS) which is primarily
intended to support applications created for use by air travel staff at check-in counters,
boarding gates, and other travel areas. CUPPS has been in production since 2009 and is a
standard endorsed by IATA, ATA, and ACI. CUPPS has its own Technical Specification
documents and processes.

The CUPPS standard is the outcome of a formal set of business requirements, crafted specifically
with “behind the counter” air travel staff usage in mind, not “customer facing” self-service
usage. For this reason, the resulting CUPPS standard does not yet explicitly enumerate or meet
any requirements that exist only in kiosk environments.

For this reason, the content of the CUPPS standard does not address all the requirements of the
large installed based of CUSS kiosks and applications, which have been deployed since 2003.

 Introduction & Preface

Revision 1.3, June 2013 17

IATA’s goal is to eventually merge the CUSS and CUPPS Technical Specifications, and the
supporting Compliance and Certification processes into a single, unified Common Use Standard.

The CUSS and CUPPS standards overlap in some areas, and are distinct in others.
Together, they define consistent and predictable environments on which airlines can
deploy applications into the airport environment.

No timeline has yet been set for the integration of CUSS and CUPPS, and as of
publication of this document CUSS 1.3 remains the Common Use standard for self-
service devices at the airport.

For more information on CUPPS, please see the IATA PEMG Extranet site.

About CUSS 1.3 and Document Changes

The CUSS Technical Solution Group (TSG-CUSS) received mandate at IATA PEMG05/SEA to
update the CUSS Technical Standard (CUSS-TS) from version 1.2 to version 1.3 with the
following goals1:

1) Merge the CUSS FOID Addendum into the CUSS Technical Specification
(Chapter 8)

2) Define a new unified Baggage Scale/Conveyor interface with both a CUSS
Component Mode interface, as well as an AEA-SBD passthrough interface
(Chapter 7)

3) Define a new Payment Device interface (Chapter 7)

4) Define capabilities for Automatic Remote Update (ARU) for applications
(Chapter 9)

5) Update the Technologies List to current versions (Appendix E), in particular the
major updates to:

i. Java Runtime Environment 7

ii. Internet Explorer 8 as the default “Standard CUSS Browser “

iii. Adobe Flash 11.7.7

iv. Silverlight 5

6) Upgrade printing support to AEA2009 and enable additional AEA commands

1 Refer to the PEMG05-CUSS-TSG technical minutes and TSG Status Update to CUWG

 Introduction & Preface

Revision 1.3, June 2013 18

This updated Technical Specification document fulfills those goals and defines version 1.3 of the
IATA Common Use Self-Service (CUSS) standard. This single CUSS-TS document presents the
proper and mandatory behaviour of CUSS 1.3 compliant platforms and applications.

The following changes have been made in updating this specification document from CUSS 1.2
to CUSS 1.3 (see the next section for changes from CUSS 1.0 to CUSS 1.2):

• Update revision number, date, and year of IATA, and change CUSSMG references to
PEMG/CUWG

• New “About CUSS 1.3 and Document Changes” introduction

• Add the Version Lifecycle statement about the deprecation of CUSS 1.0.

• Include basic information on CUPPS in the introduction

• Updated Section 1.7 to include more information on application and platform
responsibilities for securing sensitive payment card data.

• Add RI, RC, PV, EP and ES to supported AEA commands

• New Section 2.4.4 (Modes of Operation for Applications) and Section 2.4.5 (Special
State Transitions and Notification Strings) from the CUSS 1.0 Addendum

• In Chapter 7, added the revised Integrated Baggage Conveyor definition, based on
AEA2012-2 for Self Bag Drop (SBD) devices.

• In Chapter 7, added a new dedicated Baggage Scale definition for weight scales not
connected to baggage systems.

• Add the new Payment Device interface to Chapter 7 including an XML schema for
transaction data communication.

• Merge the CUSS FOID Addendum into the document as a new Chapter 8, and include
specific updates as included in v1.3 of the CUSS FOID Addendum.

• Add Chapter 9 defining how application Automatic Remote Update should take place in
CUSS 1.3

• Update Appendix E to list the current tools, technology and runtime environment
available to CUSS applications at the kiosk

• Update Appendix I to reflect changes to guidelines about application updates and
distribution in the context of Automatic Remote Update (ARU)

• Update the interface definition files comps.idl, types.idl, codes.idl and characteristics.idl
to support changes in the Technical Specification

• Add the new CUSS.PAYMENT.XSD file defining the data format for the Payment
Interface

 Introduction & Preface

Revision 1.3, June 2013 19

• Add the new CUSS.SBD. XSD file defining the data format for the data messages for
Baggage Conveyors and Scales, including weight, alibi, dimension, RFID, and other
information.

• Add the new ACTIVE_UNAVAILABLE and ACTIVE_ACTIVE transitions.

• Clarification of DS_CORRUPTED behavior when returning data to the application

• Define how barcode scanners can return multiple tracks of data in response to reader
devices that detect and scan multiple barcodes on a document.

• The existing Conveyor component and definition that existed in CUSS 1.2 remains in the
CUSS 1.3 IDLs but has been deprecated. This component is replaced by new Integrated
Baggage Conveyor and Baggage Scale component definitions.

For a quick roadmap for upgrading kiosks and platforms to CUSS 1.3, please read Appendix J:
upgrading to CUSS 1.3.

 Introduction & Preface

Revision 1.3, June 2013 20

About CUSS 1.2 and Document Changes

The CUSS Technical Solution Group (TSG-CUSS) received mandate at IATA CUSSMG24 to
update the CUSS Technical Standard (CUSS-TS) from version 1.0 to version 1.2 with the
following goals2:

1) Update the Technologies List to current versions (Appendix E)

2) Merge Addendum document into Technical Specification (see Appendix J)

3) Include Real Device Behaviour Clarification document (Chapter 7)

4) New section covering Change Control documents from CUSSMG23 (Appendix I)

5) Include PDF printing support as a printing option for GPP printers (Chapter 6.4)

6) Add data security requirements for PCI DSS (Section 1.7)

7) Clearly state the upgrade requirements and compatibility of 1.2 vs. 1.0/1.1
(Appendix J)

8) Add AEA2008 printer support and a 2D barcode scanner as mandatory
equipment for CUSS-1.2 kiosks, to support IATA Resolution 792.

This updated Technical Specification document fulfills those goals and defines version 1.2 of the
IATA Common Use Self-Service (CUSS) standard. It combines previous CUSS-TS documents
into an updated single reference (this document) which presents the proper and mandatory
behaviour of CUSS 1.2 platforms and applications:

• Common Use Self Service (CUSS) Technical Specification Revision 1.3

• CUSS 1.0 Addendum Document

• CUSS 1.0 Clarification of IATA CUSS Real Device to Virtual Component Mapping

Within this specification, there are references to CUSS 1.0 Addendum A.1.??. These indications
are only to provide a source that justifies the change to the specification for CUSS 1.2. Readers
do NOT need to refer back to the CUSS 1.1 Addendum document for further information.

2 Refer to the CUSSMG24-TSG technical minutes and TSG Status Update to CUSSMG

 Introduction & Preface

Revision 1.3, June 2013 21

Please note: This CUSS-TS 1.2 document is based on a recovered version (from PDF) of the
original CUSS 1.0 specification. Some formatting in the original CUSS 1.0 document may have
been lost in this conversion process.

The following changes have been made in updating this specification document from CUSS 1.0
to CUSS 1.2:

• Update revision number, date, and year of IATA

• New About CUSS 1.2 Introduction

• New Section 1.7 providing a brief discussion on data security

• Add ZS and AV to supported AEA commands.

• New Sections 2.1.1 and 2.1.2 with more information on CORBA TCP/IP requirements

• New section 2.4.3.10 explaining the Periodic/Automatic restart for CUSS applications

• New Section 2.4.4 (Modes of Operation for Applications) and Section 2.4.5 (Special
State Transitions and Notification Strings) from the CUSS 1.0 Addendum

• New Section 3.2.3 with information on how to handle components whose behavior can
depend on other components, and new Section 3.6.11 explaining how to use printers
which have a limited capacity to stack or hold documents.

• New Section 3.8 showing how MediaInput devices (such as card readers) generate
MEDIA events.

• New Chapter 6 (Extended Device & Media Type Handling) and Appendix H (Extended
Data Types List) defining the use of extended data types in CUSS 1.2

• New Section 6.4 permitting PDF printing if kiosks are equipped with a GPP

• New Chapter 7 (Real Device Programming Guide) explaining how CUSS application
developers should interact with kiosk devices.

• Updates to Appendix B to indicate how kiosk devices are used in CUSS.

• New Appendix D content to include all AEA clarifications from the CUSS 1.0
Addendum.

• Expanded Appendix E explaining the tools, technology and runtime environment
available to CUSS applications at the kiosk.

• New Appendix G relating to physical document characteristics from the CUSS 1.0
Addendum.

• New Appendix I providing guidelines about application updates and distribution.

• New Appendix J cross-referencing CUSS 1.0/1.1 Addendum entries with CUSS 1.2
specification changes.

 Introduction & Preface

Revision 1.3, June 2013 22

• Updates to level(), enable(), disable(), offer() and receive() removing some data and even
handling ambiguity and providing some real device examples.

• Remove the Index section (its formatting was lost in the conversion from PDF.

• Add Baggage Conveyor components to comps.idl and characteristics.idl, and new
constants (DS_TYPES, ACTIVE_ACTIVE, etc) to codes.idl

• Moved Barcode Scanner into the Mandatory components Section 4.1. In CUSS 1.0 and
1.1, a barcode scanner device is optional. For CUSS 1.2 compliance, a kiosk must include
a 2D barcode scanner.

Chapter 7 is a significant addition to the CUSS Technical Specification. It is written to provide
more practical information to application developers on how to find, set up, and use different
types of devices on a CUSS kiosk. This new chapter combines information from earlier Chapters
1-5 and presents a clearer picture of how to use CUSS devices.

For a quick roadmap for upgrading kiosks and platforms to CUSS 1.2, please read Appendix J:
upgrading to new version of CUSS in Version 1.2 of the CUSS Technical Specification.

 Architecture Overview

Revision 1.3, June 2013 23

Ch 1: Architecture Overview

This section describes the overall architecture of the Common Use Self Service (CUSS)
standard. Currently, this standard only covers Self Service kiosks. Other Self Service facilities
will be incorporated into the CUSS standard as soon as they become available within the travel
industry. This section consists of the following subsections:

CUSS Principles

CUSS Kiosk Architecture

CUSS Platform Hardware

CUSS Platform Software

Kiosk Application (AL application)

Complete CUSS Environment

1.1 CUSS Principles
The CUSS standard was developed according to the following principles:

The standard is operating system independent
The platform providers are not forced to use a particular operating system; they have the
freedom to use the operating system that is most effective for them, and for the
application providers they would like to serve.

No specific hardware platform is assumed
The CUSS standard doesn't state any particular processor architecture. In addition, the
hardware of a standard compliant kiosk system should not be limited to particular devices
(i.e. devices from specific vendors). Platform providers are allowed to use the hardware
devices they choose as long as these devices provide the functionality that is required to
support the device components interface.

The standard allows for vendor independence
In addition to the hardware and software, no specific vendor of kiosks is mandated by the
CUSS standard. Any vendor providing a competitive product may be used.

Self Service applications are platform independent
CUSS certified applications should be capable of being run on any CUSS certified
platform. A platform must support multiple concurrent applications. Refer to the ‘CUSS
Certification’ document for more details.

 Architecture Overview

Revision 1.3, June 2013 24

1.2 CUSS Kiosk Architecture
A CUSS kiosk is intended for use in a self-service environment. In a typical self-service process,
the customer gives some information and the kiosk returns information or hands out documents.
Therefore the kiosk is equipped with reading devices and printing devices to make out the
documents. The rest is a normal PC or NC, equipped with at least a touch screen for user
interaction.
Platform providers offer the CUSS kiosk, and application providers share it to run their kiosk
applications on.
A kiosk is composed of a platform and one or more applications. To realize a common kiosk
platform, the hardware device access layer has to be hidden away from the applications that run
on such a kiosk. A hardware abstraction layer is introduced that offers common interfaces for the
different hardware devices within a kiosk to the application. The result is the following three-
layered architecture (Figure 1).

Figure 1 Three-Layered CUSS Kiosk Architecture

The lowest layer consists of the kiosk platform hardware. The next layer is the platform
software, consisting of the platform environment in general (operating system, software plug-ins,
etc.), the Application Manager, the system manager interface, the Common Launch Application,
and the hardware abstraction layer containing the Device Components. Each device component
drives a dedicated hardware device, and provides a standard interface to it. The third layer is one
or more application(s) running on such a kiosk. The interface between a kiosk application and
any platform component is based on CORBA and is defined in Section Ch 3:: Interface
Definition.

Kiosk Application

Platform Software

CORBA

Platform Hardware

Kiosk Application

Platform Software

CORBA

Platform Hardware

 Architecture Overview

Revision 1.3, June 2013 25

1.3 CUSS Platform Hardware
CUSS Platform hardware consists of all hardware components included in the kiosk. This
currently includes a normal PC/NC, a touch screen, a magnetic card reader and a boarding pass
printer (AEA.) Other recommended and optional components could also be added to the kiosk.
Please refer to Section Ch 4:: Real Component Characteristics, for more details.

1.4 CUSS Platform Software
The platform software consists of all the software included in the kiosk except those supplied by
the application providers.
The platform software is responsible for managing the entire kiosk system including:

instantiation and presentation of all platform processes including browser and device
components,

displaying common screens while no kiosk application is active
providing data and statistical information to the remote management system via the system

manager interface,
controlling/monitoring components states, and
managing system security.

These responsibilities are shared by various platform elements, namely, the platform
environment, the application manager, the system manager interface, the common launch
application, and the device components. The following sections describe these elements in more
details.

1.4.1 Platform Software Environment

The platform provider is responsible of supplying the kiosk with the following software
environment (see Figure 2): operating system, Internet browser, Java virtual machine,
miscellaneous software containers and plug-ins (e.g. Macromedia shockwave player) as
described in Appx E:: Technologies and Standards.

Figure 2 Platform Software Environment

Plugins
(Shockwave, etc.)

Java VM

Browser

Operating System

Plugins
(Shockwave, etc.)

Java VM

Browser

Operating System

 Architecture Overview

Revision 1.3, June 2013 26

1.4.2 CUSS Application Manager (CAM)

The CUSS Application Manager is responsible for controlling and scheduling the kiosk
applications that are registered on a specific kiosk. This includes declaring individual or all
applications stopped or suspended upon instruction from the system manager interface. For
example, a platform provider may wish to stop all applications at night when the airport is not
operational.
The application manager is also responsible for informing the Common Launch Application
(refer to Section 1.4.4) to remove (or make un-selectable) application icons from the selection
(launch) screen when individual applications are disabled, stopped, suspended or become
unavailable for whatever reasons, or to display an appropriate general "kiosk not available"
screen when all applications are disabled, stopped, suspended or unavailable.
As shown in Figure 3, the application manager is in charge of the event dispatcher of the public
event channel, the platform software environment and component repository and the access
control of the kiosk platform (including the device components).

Figure 3 CUSS Application Manager

1.4.2.1 Event Dispatcher

All kiosk applications, whether they are in background or in foreground, may connect to the
public event channel that will be serviced via the event dispatcher. In this way, background
applications may inform the application manager that they are available (selectable on the launch
screen) or unavailable, depending upon the devices they need, and the ones they can operate
without. For example, assume the ATB reader reports its failure via the public event channel,
then the application decides whether it is able to proceed without an ATB reader, if so, the
application remains available, but if not, the application calls the application manager to make
itself not available. In this example most applications may want to continue operating, since they
can continue serving customers with electronic tickets (assuming that the card reader is still
available).

Event Dispatcher

 Environment &

Component Repository

Access Control

 Architecture Overview

Revision 1.3, June 2013 27

1.4.2.2 Environment & Component Repository

The Environment & Component Repository is obtained from the application manager. It contains
information about the platform environment itself (e.g. kiosk location, software environment,
etc.) and a list of virtual components, along with their attributes, so that components can be
selected by an application for operation. If a device component isn't registered in the component
list, the appropriate hardware device is not present in the kiosk. It is then up to the application to
decide whether the requested component is mandatory or optional for its proceeding. If it is
optional, the application can still execute, but with limited functionality, depending on the
devices that are present.

1.4.2.3 Access Control

The kiosk application has only restricted access to the underlying system, which is controlled by
the platform (application manager and device components) to assure the security of the kiosk
platform.
The application manager is also responsible for assuring that only the currently active kiosk
application and its backend system(s) are able to access the device components of a kiosk.
Therefore a mechanism is needed to ensure that only one kiosk application and its associated
backend system can access the kiosk platform at a time. The application manager issues an
application token whenever the kiosk application procedure initializes. While the application is
active, this token is valid for full access of the device components. After the application has
terminated (unloaded) or has re-initialized, the application manager invalidates the token.

1.4.3 System Manager Interface (SMI)

The system manager interface is a standard CORBA interface implemented on the kiosk,
allowing for remote management of kiosk by providing the ability to control and monitor the
platform to registered system managers via interfaces with the device components and the
application manager functions in the platform. The responsibilities of the system manager
interface includes:

allowing a system manager to register its listener(s) for receiving general events, errors,
alerts, alarms, etc.

reporting errors, alerts, alarms encountered by device components (platform components)
reporting normal events (e.g. Application-specific events to its system manger, application

state changes to the SP system manager)
gathering statistical information (platform provider's/service provider's scope)
receiving commands (such as load/stop/suspend/resume) from service provider's system

manager or application provider's system manager. These commands will be relayed to
application manager to change the state of (a) particular application(s).

 Architecture Overview

Revision 1.3, June 2013 28

1.4.4 Common Launch Application (CLA)

The Common Launch Application, also known as Selection Interface Screen, is the application
that is resumed during idle times, when no other kiosk application is active. It shows the
common launch screen with all application providers' logos that have a kiosk application
registered on the kiosk and that are currently available and selectable. The customer chooses the
application provider's logo. This choice is reported to the application manager, which then
activates the indicated kiosk application. In case of all the registered kiosk applications are
unavailable, stopped, disabled or suspended, the common launch application will show "kiosk
not available" type of screens. In general, the behavior of the common launch application
changes when one or more kiosk applications change their states. Refer to Section 2.4.3 for
descriptions of all application state transitions and their implications on the CLA behavior.
The platform provider supplies the common launch application. Hence, the interface between
CLA and other platform components (like CAM) is not specified in CUSS and left up to the
platform provider.

1.4.5 Device Components

The kiosk application is not allowed to access the hardware devices directly. To realize this, the
CUSS standard introduces a hardware abstraction layer that hides the proprietary device
interfaces from the kiosk application. The kiosk application accesses the hardware devices
through the device component interfaces of the platform (see Figure 4).

Figure 4 Device Components

A device component is an object that resides on the kiosk and is part of the platform software. It
is independent from the kiosk application, and the interface is used to access the device. A
device component can implement one or more interfaces, each of which is specific to a
functionality that is offered by the associated hardware device. For instance, the device

Kiosk Application
Platform

Management
Interfaces

Device Components

Hardware Devices

Kiosk Application
Platform

Management
Interfaces

Device Components

Hardware Devices

 Architecture Overview

Revision 1.3, June 2013 29

component of an ATB reader/printer with an escrow for example provides at least three
interfaces, one for the ATB reader functionality, one for the ATB printer functionality and one
for the escrow.
A device component is not only an adapter to the associated hardware device; it is also
responsible for controlling the state of the device. A kiosk application can either ask the device
component for the state of the hardware device at the time it needs this information, or the
application can assume that a device is working and gets its status if it is not. The application
doesn't have to keep track of the device's state.
A device component is a distributed CORBA object; therefore, it is remotely accessible. This
allows components of multi-tier applications to access the local component interfaces of the
kiosk system. An access control mechanism (refer to Section 1.4.2.3) assures that only the
backend of the currently active kiosk application has the permission to access the device
components of the kiosk.

1.5 Kiosk Application (AL application)
The kiosk applications are the essential components of a CUSS kiosk system. They provide the
functionality the kiosk offers to the customers using it. It depends on the kiosk application
whether a kiosk can be used for airline check-in/ticketing or virtually any other services (e.g.
ATM, TVM, etc.). There is no theoretical limitation about what and how many kiosk
applications can be offered on a kiosk system. The kiosk applications are executed/controlled
within an execution environment that is provided by the platform (See Figure 5).

Figure 5 Kiosk Application and Associated Componen ts

A kiosk application could be any range from a fat client, thin client to a very thin client. The
thinner the client, the greater the portion of the application that resides and runs on an external
back-end application-specific server. For more details on application architecture options, refer
to Section 2.2: Application Architecture Options.

Note: Application clients running on a kiosk can be either Java-based or browser-based,
where only cross-OS controls are allowed in the Standard CUSS Browser. Customized
JVMs are not allowed and only one specific JVM version will be allowed in CUSS to

Kiosk Application

Application
Manager

Device Components

Application
Server(s) or

Host
Kiosk Application

Application
Manager

Device Components

Application
Server(s) or

Host

 Architecture Overview

Revision 1.3, June 2013 30

achieve compatibility among platforms and applications (Refer to Appx E: for more
details on accepted JVM, browsers plug-ins, etc).

For performance reasons, all kiosk applications registered on a kiosk are started at a given time,
usually power-up, and are run concurrently on that kiosk. Only one application is active at a
time. Only the active kiosk application and its associated backend system are allowed to access
the kiosk's device components, except for status listening.

1.6 Complete CUSS Environment
The previous sections introduced the components of the CUSS kiosk platform. Now we want to
introduce the complete CUSS environment, the environment a CUSS compliant kiosk is part of.
All elements of this environment have been introduced together with the platform components
they interact with. This section puts these pieces together into a complete picture (Figure 6).

Kiosk Application
Application

Manager

System
Management

Interface

Device Components

AL System
Manager

PP
Distribution

Server

SP System
Management

Platform

AP
Application
Server(s)

From Airline

Kiosk Application

 CUSS

Application
Manager

System
Manager
 Interface

 Platform Device Components

PP

Server

SP System
Manager

AL Application
Server(s) or
Host(s)

Figure 6 The Complete CUSS Environment

The CUSS environment is divided into two domains. One domain is the common environment,
which is provided by a platform provider and managed by a service provider. This domain
contains the dark colored (black and green) elements in the diagram (Figure 6). The other
domain, represented by the light-colored (orange) elements, is part of the private environment of
an application provider. The white and gray arrows reflect the interfaces that should comply
with the CUSS standard.

The CUSS environment comprises these elements:

CUSS Platform:
The kiosk CUSS Platform is the main element of a platform provider's environment. It
consists of the Application manager, the System Manager Interface, the Common Launch
Application (not shown in diagram) and the device components.

 Architecture Overview

Revision 1.3, June 2013 31

Kiosk Application
The kiosk applications runs inside or outside the kiosk and communicates with the CUSS
platform (Application Manager and Device Components) via the CUSS interface.

AL Application Server(s) or Host(s)
Most kiosk applications might do backend communication with servers or hosts in their
application provider's environment (e.g. airline check-in applications will communicate
with an airline's check-in system).

AL System Manager
The airline application provider uses his management platform to retrieve system
management information from the kiosk. It communicates with the kiosk CUSS platform
(System Manager Interface and Device Components) via the CUSS interface.

SP System Manager
The service provider uses his management platform to manage the kiosks and their
device components. If a platform provider runs his kiosks on his own, he is his own
service provider. It also communicates with the kiosk CUSS platform (System Manager
Interface and Device Components) via the CUSS interface

PP Distribution Server(s)
The PP distribution server, controlled by the platform provider, contains all the software
components (application (if any) and platform) that should be loaded onto the kiosk.

1.7 Data Security Considerations

Many CUSS kiosks are deployed with CUSS application that process payment transactions using
magnetic stripe cards inserted by the customer. In addition, the applications may support other
magnetic card operations such as Identification and Loyalty Account updates.

Because these magnetic stripe card operations allow the kiosk user to insert a Payment Card
(whether or not a payment card is requested), the CUSS platform and CUSS applications must
ensure that sensitive payment card information is not exposed as part of magnetic stripe card
processing.

In this document, “sensitive data” is considered to be any payment information that confirms
with ISO/IEC 7813 Identification cards -- Financial transaction cards, including data read not
only from magnetic cards, but any other current or future media that provides the same data.

Throughout this document, any references to “sensitive data” or “magnetic payment track
data” should this be interpreted as referring to any ISO7813-compliant data, regardless of
the media source.

In the current CUSS Technical Specification 1.3, platforms must follow the considerations
outlined below as a condition of reading sensitive data from magnetic stripe payment cards.

 Architecture Overview

Revision 1.3, June 2013 32

Note: IATA intends that as part of an industry move to next generation payment
solutions, future releases of the CUSS Technical Specification, will eventually remove
the capability of reading complete magnetic payment cards completely to reduce the risk
of exposing payment card information.

 Note: Aside from this section, the CUSS Technical Standard does not address any security
considerations for receiving, providing, handling, or forwarding private or sensitive data. It
does not qualify any aspect of the standard or interfaces as containing sensitive data.

The CUSS-TS is a technical interface that only defines how kiosk devices are controlled and
how data from those devices can be exchanged - it does not prescribe how the data is used or
must be protected using technical controls.

It is the responsibility of CUSS platform and application vendors/suppliers, providers, and
integrators to be aware of all data security and data privacy standards that are in effect at their
locations, and they must ensure that all components in a CUSS kiosk solution under their control
abide by these applicable standards.

Because these standards may change independently of the CUSS Technical Specification, and
vary from location to location, the CUSS standard does not enumerate these applicable data
security standards nor does it list the data handling guidelines that are be needed to meet their
requirements.

In addition, the CUSS Technical Specification does not replace, supersede, enforce or guarantee
any separate data handling and processing standards that may apply. Compliance with the CUSS
Technical Specification does not imply or convey compliance with any other data handling or
processing standards, or security guidelines.

As a general principle, CUSS platform and application providers must acknowledge that CUSS
kiosks provide access to this sensitive data and take steps so that this data:

• Must be solicited from the kiosk user only when needed and in accordance with card
scheme operating regulations

• Must never be logged or stored at the kiosk
• Must only be sent to known and trusted entities with a “need to know”
• Must be protected if sent over a network

Application and platform providers may wish to deploy Data Loss Prevention and similar system
data monitoring/audit tools to assist in meeting these requirements and reducing exposure risk.

Here are some specific requirements that all CUSS platforms and applications shall follow:

 Architecture Overview

Revision 1.3, June 2013 33

1.7.1 Requirements for CUSS platforms

1. Platforms must implement the CUSS FOID Addendum (Chapter 8) on all CUSS

components that provide application access to magnetic stripe card data. This means that
payment card data is sent only to applications that explicitly request full payment data for
use as part of a payment transaction.

2. Platforms must not log or store (encrypted or otherwise) sensitive data on the kiosk.
Sensitive data may be logged only if it is truncated in accordance with applicable
standards.

3. Platform providers must ensure that lower tier tools deployed on their kiosk, such as

OEM device control toolkits, 3rd party software libraries, or serial/USB control tools, do
not expose sensitive data.

4. Platforms must not maintain sensitive information in memory or session storage beyond
the immediate time frame needed for the CUSS application requests. For example,
platforms shall purge card data from their buffers after the application calls receive() to
get the data.

5. Platforms shall transmit sensitive data over a network only if there exists a business need
to do so. Any network traffic that contains sensitive data must be encrypted using
appropriate and compliant encryption methodologies.

1.7.2 Requirements for CUSS applications

1. CUSS applications must abide by the CUSS FOID Addendum (Chapter 8) and shall

request full payment card track only as part of a payment transaction. For all other
functions, such as passenger identification, applications must not request full payment
card data from the platform. This requirement is Subject to certain exceptions outlined in
Chapter 8.

2. CUSS applications must not log or store (encrypted or otherwise) sensitive data on the
kiosk. Sensitive data may be logged only if it is truncated in accordance with applicable
standards.

3. Application providers must ensure that lower tier tools deployed on their kiosk, such as

application programming toolkits, generic/rebranded components, 3rd party software
libraries, and CUSS interface components, do not expose sensitive data.

 Architecture Overview

Revision 1.3, June 2013 34

4. Applications must not maintain sensitive information in memory or session storage

beyond the immediate time frame needed for the customer payment transaction. For
example, applications shall purge card data from their buffers as soon as the payment
transaction is complete.

Applications shall transmit sensitive data over a network only if there exists a business
need to do so. Any network traffic that contains sensitive data must be encrypted using
appropriate and compliant encryption methodologies.

5. CUSS applications should only transmit sensitive data as required by their business rules
and application architecture. For example, if an application transaction server only needs
the payment account number to complete a payment transaction, the application should
only send the PAN and should not send complete track data.

6. While most CUSS applications run locally, the CUSS CORBA Interface Definition
allows an application to connect to CUSS platform components “over the wire” from a
remote server. Any CUSS application that connects “over the wire” to the CUSS
interfaces using CORBA from a central application server, should redesign the card
handling logic to ensure that all processing of sensitive data takes place at the kiosk. For
example, a local “stub” applet should call receive() from the kiosk and encrypt the data
being sent to the server, even though all other CORBA communication is directly from
the server.

 Interface Overview

Revision 1.3, June 2013 35

Ch 2: Interface Overview

This section describes the interfaces between a CUSS Application/CUSS System Manager and a
CUSS platform, as shown in the complete CUSS Environment in Section 1.6. This section will
cover the following:

Interface Communication Layer

Application Architecture Options

Interface Directives and Events

Application Manager Interface (AMI)

System Manager Interface (SMI)

Device Component Interface

2.1 Interface Communication Layer
Standard CORBA IIOP will be used between all ORB communications. This applies to the
communication between any CUSS Application/CUSS System Manager and a CUSS Platform.
The underlying communication layer between any CUSS element inside the kiosk and any other
program outside the kiosk is based on TCP/IP (Figure 6 shows all of the elements in the
complete CUSS environment). For example, Application Client communication between the
kiosk and the Application Server or Host is done over an IP network.
To enforce security in communications, the application that wants to encrypt the data to/from a
CUSS component must have an Application Client that includes code that is capable of
encryption. The encryption of the data is not part of the CUSS standard. An application that does
not want to use the encryption facility, may access the CUSS component directly from an
external platform.
Network security is beyond CUSS standard and requires an SLA between the platform provider
and the Airline application provider (e.g. network VPN between airline kiosk application and its
application server).

2.1.1 Local vs. Remote Interface Connections

This section is taken from CUSS 1.0 Addendum A.1.5.

An airline application provider can request the use of a network-reachable address or hostname
to communicate with the platform, in which case the kiosk must provide it. This can be a
requirement if any part of the application logic is run remotely, for example on an application
server.

 Interface Overview

Revision 1.3, June 2013 36

However, the localhost interface is a valid kiosk IP and it is strongly recommended that
applications running locally on the kiosk use this address (for connections, and callback
interfaces.) This avoids many problems with dynamic DHCP lease renewal, media
sense/disconnect on physical interfaces, etc.

If interfaces other than the localhost (127.0.0.1) interface are available on the kiosk, the kiosk
provider must inform the airline application providers if there are any restrictions regarding
which interfaces can be used by a particular airline application. This can be an issue if multiple,
possibly airline-specific, network interfaces are available.

All system management and component interfaces must be accessible of the network, so that
remote management can occur as intended by the CUSS specification.

2.1.2 CORBA TCP/IP ports used by CUSS platform and applications

This section is taken from CUSS 1.0 Addendum A.1.29.

By default, CORBA ORBs often allocate ports to interface objects from the entire available
range of ports. When these CORBA objects communicate over a LAN or WAN, it is difficult to
configure and manage firewall and access rules within the network, as these rules often restrict
traffic by port number.

To allow CUSS applications and the platform to interact via CORBA object over a remote
network connection, the Interface Communication objects (virtual components, event listeners)
must use ports from a fixed, predefined range of TCP/IP ports. This allows network, kiosk and
firewall administrators to more easily configure and restrict the communication between the
kiosks and the kiosk/airline networks.

To allow this, the CUSS platform shall create all interface objects so that they listen on TCP/IP
ports in the range 20000-20199 (as described elsewhere in this document, standard reference
ports 20000 and 20001 are already define; other ports may be used for items such as callback
listeners, device component interfaces, etc.)

Likewise, CUSS applications that are written to run remotely (where the CUSS objects are
running on an application server, not on the local kiosk) shall be written to use port(s) in this
range as well, for event listeners.

Consult your CORBA ORB technical documentation to understand how to create interface
objects which use ports in this range.

This section applies only to the CUSS interface CORBA objects used by CUSS platforms and
applications. It does not apply to or restrict the ports that can be used by an application to
communicate with its backend hosts and servers. Any TCP/IP network access that an application
needs to access its remote servers should be discussed and documented by a kiosk provider as
part of the application integration and airport deployment

 Interface Overview

Revision 1.3, June 2013 37

2.2 Application Architecture Options
The CUSS environment provides several options for creating the architecture for an Airline
Application. This is represented in three basic categories (refer to Figure 7):

Multi-Tier Client - In a Multi-Tier application a portion of the application is resident on the
CUSS kiosk and the remainder resides on the remote server(s). For instance, the
presentation layer may be resident on the CUSS kiosk and the business logic may reside
on the remote server(s).

Fat Client - The application may be deployed as a fat client where the application is loaded
locally on the CUSS kiosk and provides its business logic and presentation logic locally.

Thin Client - In the case of a thin client application, the business logic and presentation
logic, both reside on a remote Host/Application Server. The access to this application is
via a browser running on the CUSS kiosk.

In all of the above cases, the interface to the CUSS platform remains the same. This is achieved
by accessing the Application Manager CORBA Object reference by using CORBALOC (refer to
Section 3.4) with the pre-configured IP address or host name of the CUSS kiosk. This will be
true whether the call is made locally on the CUSS kiosk or from a remote server.

 Interface Overview

Revision 1.3, June 2013 38

Figure 7 Application Architecture Options

2.3 Interface Directives and Events
Interface Directives and Events are provided to allow applications to access the platform services
such as access to peripherals and communication with the Application Manager. Directives and
Events also provide flexibility to the application; depending on its needs, the application can
access the platform services using only directives or a combination of directives and events.
The design of Directives and Events is generic in nature in order to make the interfaces
applicable to different types of device components, including any new ones that may be added in
the future. For instance, sending data to a SmartCard or to a generic printer will use the same
function call. It is important to note however that this will add a level of complexity to the
application and platform development.
The usage of Directives and Events will be restricted by the platform based on the appropriate
application state, device state, and rights assigned to the application.

Kiosk

`

Airline
Application Server

Airline Mainframe

CUSS Platform

CUSS Platform

Host Application Application/Server

Host Application

Host Application Application CUSS Platform

Host Application CUSS Platform

Application

Application ClientIP Application Link

IP Application Link

TCP/IP Corba Link

TCP/IP Corba Link

Multi-Tier

Fat Client

Thin Client

Thin Client

 Interface Overview

Revision 1.3, June 2013 39

2.3.1 Directives

Directives are high-level functions/methods for CUSS Application Manager/System Manager
Interface and Device Component Interfaces to perform specific actions on a platform component
on behalf of an application.
To allow flexibility for the application architecture, directives can be called in two modes:

Synchronous: the interface implementation will block the call until its execution is done or
when timeout occurs. The result of the directive will be attached with the return call
itself.

Asynchronous: the interface implementation will check the lexico-syntax of the calls and
returns immediately. Only if the call is valid (i.e. directive is accepted), the information
(or result of the action) requested will be returned via an associate event upon complete
execution of the call.

Directives are divided in two categories in the CUSS standard:

Shared: can be used by any non-suspended AL application (e.g. generate an event for
System Manager, put the application in UNAVAILABLE state, etc.), or by SP/ AL
system managers.

Exclusive: can be used only by an active AL application (e.g. print, read, etc.) or by the SP
system manager only if the kiosk is not in use (i.e., after suspending or stopping all kiosk
applications). An AL System manager is not allowed to call an Exclusive directive.

No Directives can be used by suspended applications.
Note: All directives can be accessed locally or remotely. That is to say that all Directives are
available for portions of the application running locally on the kiosk or on the application
server/host. For more details on the directives and their definitions, refer to Section Ch 3:.

2.3.2 Events

The platform communicates with the application (AL or SM) via callback events regardless of
the application state.
The main elements that constitute an event, including event listener mechanism and event
processing, will be described in the following sections. For the actual definition of the event
structure, please refer to Section 3.1.11.

2.3.2.1 Event Cause

An event can be caused by:
Hardware malfunction
Software malfunction
Acknowledgement of an existing error
Error repaired
Any normal situation change that can modify the self-service application or System Manager

behavior
Asynchronous/synchronous interface call completion or abortion of a directive

 Interface Overview

Revision 1.3, June 2013 40

2.3.2.2 Event Source

An event can be generated by:
Any application program sending events to a System Manager
CUSS Application Manager
Device Virtual Component

2.3.2.3 Event Modes

By definition, events are asynchronous, but they can be triggered in two modes:
Solicited: An event can result from an accepted asynchronous call to a directive.
Unsolicited: An event that is the consequence of a change in state of a component or an

application. The event is not related to any previous directive call.

In either case, the information given by the event is the same as it is with the synchronous
interface call of a directive. In the case of a component change, Unsolicited Events will be the
same as the one returned to a Query (refer to Section 3.6.4) call to the same component.

2.3.2.4 Event Categories

Events can be divided in three categories:
Normal: normal processing occurs, not a detected error
Alert : abnormal situation occurs, but manual intervention is not needed
Alarm : requires immediate attention (i.e. manual intervention is required)

 Interface Overview

Revision 1.3, June 2013 41

All alert and alarm events must be sent to System Manager software as they appear. The
following chart shows the main distinctions of an alarm versus an alert:

Alert Alarm

Status returns to normal automatically if the
problem is solved or disappears

Status stays in alarm condition until
acknowledged by SP System Manager and
resolved by a human being.

Follows severity setting for problem solving Requires an immediate response by a
human being

e.g.: paper low, out of paper, device not
reachable

e.g. kiosk door is open, temperature sensor is
too hot or too cold

Figure 8 Alert Vs. Alarm

It is up to the platform provider and service provider to agree via an SLA on which events are
classified as alerts vs. alarms. For example, a platform provider may choose to consider a device
not reachable or out of paper as alarms while others may consider them as alerts.

2.3.2.5 Event Types

Events will be divided into four types (this is the publisher filtering):
Public: all AL applications and System Manager applications may receive the event.
Private: only the associated AL application and the AL System Manager (solicited event)

may receive the event.
Platform : only the SP System Manager, CUSS Application Manager, CLA, and the CUSS

Component Interfaces may receive the event.
Invalid : if a directive was called in asynchronous mode or a synchronous call was rejected,

the returned event type should always be invalid.

All events MUST have at least one of the above-described types. The actual type is context
dependant; e.g., Status OK can be either private or public: private if the status is given for an
interface call from an application, public if the status is given from a change in the component
state that just recovered from an abnormal status.

2.3.2.6 Event Codes

An event code reflects either an application or component state transition (or the actual state
itself in case there is no state transition). For a list of all event codes, please refer to Appendix A.

2.3.2.7 Status Codes

A status code is part of the event definition. It describes the current status of a component or the
result of the semantical analysis of a component interface call or the execution result of a
component interface call. For a list of all status codes, please refer to Appendix A.

2.3.2.8 Event Listener Mechanism

The AL application and SP/AL System Manager may use only one general listener (please refer
to the registerEvent directive in Section 3.3.5) and/or component specific listeners (please

 Interface Overview

Revision 1.3, June 2013 42

refer to the acquire directive in Section 3.6.1) to receive all events: solicited events (the result
of an asynchronous call) and unsolicited events (the result of a state change for which the
application has done nothing).
When the application uses the registerEvent directive, with subscribe action, all events for
which the application has subscribed will be sent to the listener associated to that directive. This
allows an application to have only one listener.
When the event subscription is done at the Component acquire directive, all events, for which
the application has subscribed, generated from the interface and underlying layer of that
component, will be sent to the listener associated to that component. This allows an application
to have one listener per component.
Nothing would prevent an application from using both mechanisms, allowing it to have
centralized event processing when required and decentralized processing when it better suits the
application architecture.
An event will be sent only to one listener of the application. In the event of a conflict in event
subscription, the last registration to a specific event code of a specific component (regardless of
the directive used and/or the type of event list used) will be used to find listener that will receive
the event.
Subscriber filtering will also be implemented. The subscriber can choose the event that he wants
to listen to by component object reference, by component type or by event category. For the
complete event filtering definition, please refer to Section 3.1.12 (Event List Selection).
The application could change its subscribed filtering related to (or completely unregister) its
general listener (via the registerEvent directive with discard option and the appropriate
filter) or discard its component listener (via the Component Release directive, defined in Section
3.6.5).

2.3.2.9 Event Processing

Event must be processed as follows:
All events must be sent, as they appear, to the subscribed application(s) according to the

event type.
All event and state modifications must be logged by SP System Manager component.
It is the responsibility of the application to register the events and track component status.

 Interface Overview

Revision 1.3, June 2013 43

Figure 9 represents the overview of event exchange:

AL application
Active state

CUSS Platform manager
(include all application manager, device

manager and other parts of CUSS
manager)

AL application
non-Active state

SP or AL
System manager

Public
Platform

Platform

Public

Private
Public

Private

Private

Figure 9 Overview of Event Exchange

2.4 Application Manager Interface (AMI)
The Application Manager Interface (AMI) defines all available functions to an AL application to
access the platform services provided by the application manager. This includes moving an AL
application from one state to another upon a request from the application, AL or SP system
manager or the application manager itself. This section describes all the application states and all
state transitions. For actual definitions for all AMI directives, refer to Section 3.2.

2.4.1 Application State Descriptions

This section describes all the states an AL application can be. Each individual state description
includes how an application could have reached that state, what the application can and cannot
do in this state and what are the possible next states. The states are listed in specific order to
show a typical application initialization and activation sequence. An application state diagram
that shows all the states and state transitions is illustrated in Section 2.4.2.

2.4.1.1 STOPPED State

The application is not loaded on the CUSS kiosk.

 Interface Overview

Revision 1.3, June 2013 44

Only the CUSS application manager will load the application either automatically at system
startup (e.g. kiosk boot time) or upon request of the SP system manager or its own AL
system manager.

2.4.1.2 INITIALIZE State

This is the first state of the application when the CUSS Application Manager starts it:
The application manger loads an application using the pre-configured path. In case of a thin

client, the application manager loads a browser with the pre-configured application URL.
The application starts executing when it gets loaded.
Only the CUSS Application Manager can load the AL application (either automatically at

boot time or upon request of SP system manager or AL system manager).
CUSS Application Manager will allow an application to start initializing only in the

following two situations:
When the system reboots.
When the Common Launch Application is executing (No AL application is active).

The first thing the application must do is to issue the Environment level directive to gets
its token.

Next, the application must call registerEvent4 to register its callback object so that the
CUSS Application Manager can send events to the application.

Then, the application must issue a initrequest directive to inform CUSS application
Manager that the application wants to enter the INITIALIZE state.

CUSS Application Manager is responsible to manage the initialization critical path. Only one
application can be in INITIALIZE state at any one time. To enforce this, CUSS
Application Manager will return the initrequest function call issued by the
application only when the application is allowed to starts its Initialization

When the initrequest function call is returned, the application must check the event
code and its associated status code.

If the application did not receive the proper event code with the 0 (OK) status code, the
application must stop.

If the application enters the INITIALIZE state, it is allowed to perform the same actions as if
it were in the ACTIVE state with the following exceptions:
No screen display
No printout
No reading

The application will then call the Environment components directive to get the list of
components that exist on the kiosk, their characteristics and how they are linked among
each other.

When the application terminates its initialization, it is its responsibility to use the notify
directive to inform CUSS Application Manager that the phase is completed and the
application enters in:
UNAVAILABLE state, for normal completion
STOPPED state, when the application terminates its execution.

4 As initrequest and registerEvent are two independent synchronous directives, they can be issued in any
order.

 Interface Overview

Revision 1.3, June 2013 45

CUSS Application Manager can also put the application in DISABLED state, if it has a
‘misbehavior’.

An application cannot be suspended while in INITIALIZE state.

An application can only use the initrequest() to enter the INITIALIZE state. The initrequest()
directive is a blocking call and supplants the notify() directive for this state transition. The CUSS
platform should return RC_DENIED and not grant the initialization request if an application
calls notify() with the STOPPED_INITIALIZE transition. (From CUSS 1.0 Addendum A.1.31.)

2.4.1.3 UNAVAILABLE State

The application has completed its initialization process and is now ready to check its
environment before putting itself in the AVAILABLE state:

The application uses the notify directive to inform CUSS Application Manager of its
change of state either when it leaves the INITIALIZE state or the AVAILABLE state to
enter into the UNAVAILABLE state.

The application still executes in background to monitor its environment requirements.
If the application found that the environment becomes proper for a correct execution in the

ACTIVE state, it is its responsibility to send an event to the Application Manager (via
notify directive) to inform that it wants to be in the AVAILABLE state

The application can also issue a notify directive to inform CUSS Application Manager to
stop its execution.

The application is still able to communicate with the AL host/server.
The application can handle all subscribed events that the application can receive.
The application can still access all virtual components via shared directives only
CUSS Application Manager can also put the application in the DISABLED state, if it has

misbehavior.
CUSS Application Manager can also put the application in SUSPENDED state upon request

from AL System Manager or SP System Manager for operational reasons.

2.4.1.4 AVAILABLE State

The application has satisfactorily completed its environment check process and wait to be
selected while still checking its environment:

The application uses the notify directive to inform CUSS Application Manager of its
change of state either when it leaves the UNAVAILABLE state or the ACTIVE state to
enter in AVAILABLE state

The application still executes in background to monitor its environment requirement.
If the application found that the environment becomes improper for a correct execution when

activated, it is its responsibility to request the application manager to put it in the
UNAVAILABLE state by issuing a notify directive.

The application can also issue a notify directive to inform CUSS Application Manager to
stop its execution.

The application is still able to communicate with the AL host/server.
The application can handle all subscribed events that the application can receive.
The application can still access all virtual components via shared directives only.

 Interface Overview

Revision 1.3, June 2013 46

Normally the application is waiting to be selected by a user (by receiving an event from
Application Manager to become active).

CUSS Application Manager can also put the application in DISABLED state, if it has
misbehavior.

CUSS Application Manager can also put the application in SUSPENDED state upon request
from AL System Manager or SP System Manager for operational reasons.

2.4.1.5 ACTIVE State

A passenger has asked to use the application (its displayed icon on the CLA was selected):
The application is notified of its change of state by an event from application manager.
The application can access all virtual components via both shared and exclusive directives

that are not restricted to applications in INITIALIZE State.
When the application completes its session (e.g. completes passenger check-in), it is its

responsibility to use the notify directive to request CUSS Application Manager to
move it to:
AVAILABLE state, for normal completion, or
STOPPED state, when the application terminates its execution.

CUSS Application Manager can also put the application in DISABLED state, if it has
misbehavior.

An application cannot be suspended while it is in ACTIVE state. This is to allow the
application to complete its session and correctly serve its users.

2.4.1.6 SUSPENDED State

The application was suspended for any operational reason upon request of SP system manager or
its own AL system manager:

The application is notified of its state change by an event from application manager.
The application cannot use any component, it is only allowed to communicate with its

server/host and listen for events.
A manual/automated intervention is required to change the application state via the

application manager, upon request from SP/AL system manager, to either
STOPPED state: the application will have to be reloaded
Previous state: the application resumes execution in the state it was suspended from

An application can be suspended twice (first by SP SM and then by its own AL SM or vice-
versa).

If system restarts, the application will be reloaded (i.e. will not remain suspended).

 Interface Overview

Revision 1.3, June 2013 47

2.4.1.7 DISABLED State

If the application had an incorrect behavior, the CUSS Application Manager will move it to the
DISABLED state:

The application is notified of its state change by an event from application manager.
All acquired components by the application are released by CUSS platform.
The application execution is stopped and it is unloaded.
A manual intervention is required to change the application state via the CUSS Application

Manager or the SP System Manager to
STOPPED state: the application will have to be reloaded at next system startup, or
INITIALIZE state: the application will restart its execution.

An application cannot be suspended while in DISABLED state (if suspended, it is possible to
be automatically reloaded at next system startup without human intervention).

If system restarts, the application will NOT be reloaded without a prior human intervention.

2.4.2 Application State Diagram

The Application state diagram (see Figure 10) illustrates how an application can move from one
state to another. The application itself, the service provider system manager, or the application
provider system manager can request an application state change. These changes are
accompanied by an event sent to the corresponding application by the CUSS Application
manager either as an unsolicited event or as a returned event upon a notify directive called by
the application itself. Note that the numbers shown on the state transitions reflect the
corresponding event codes. Refer to Section 3.7.3 for more information on these events. State
transitions represented in solid thick lines means that a human intervention is required for this
state transition to occur.

 Interface Overview

Revision 1.3, June 2013 48

SUSPENDED

STOPPED

INITIALIZE

ACTIVE

AVAILABLE

DISABLED

UNAVAILABLE

Restart

Stop

114

111

115

116

118

SuspendResume

Disable

110

101

102

103

121
122

113

123

112

127

107

108

109

128

Load120

119

Wait 106Activate 105

Check 129

Check 130

Wait 104

Check 133 132

Figure 10 Application State Diagram

2.4.3 Application State Transition Description

2.4.3.1 Load Transition (STOPPED to INITIALIZE or D ISABLED to INITIALIZE)

Used to load or reload an application in the system:
CUSS Application Manager loads an application upon request from its own AL system

manager or the SP system manager via the load directive (refer to Section 3.5.1) or
CUSS Application Manager loads an application upon system startup or
CUSS Application Manager loads a disabled application upon human intervention.
The application will enter in INITIALIZE state when permitted by application manager.
While an application is initializing, the Common Launch Application will display a

“Temporarily not available” type of screen.

 Interface Overview

Revision 1.3, June 2013 49

2.4.3.2 Check Transition (INITIALIZE to UNAVAILABLE or AVAILABLE to
UNAVAILABLE or ACTIVE to UNAVAILABLE)

The application has either completed its initialization or has found out that the CUSS
environment is not suitable for its proper execution. Therefore, application requests
application manager to be moved into UNAVAILABLE state.

The Common Launch Application will either remove the application icon from the screen or
display it as un-selectable5.

2.4.3.3 Wait Transition (UNAVAILABLE to AVAILABLE o r ACTIVE to
AVAILABLE)

The application has determined that the CUSS environment is adequate to its proper
execution or it has completed its session. Therefore, it requests to be moved to
AVAILABLE state.

The Common Launch Application will display the application icon as selectable.

2.4.3.4 Activate Transition (AVAILABLE to ACTIVE or ACTIVE to ACTIVE)

A user has selected the application and it starts its session.
The CUSS Application Manager upon request of the Common Launch application controls

this state transition. The application manager will put the application window into the
foreground.

The Common Launch Application continues to display the application icon.

2.4.3.5 Suspend Transition (to SUPSENDED)

The application execution is suspended:
CUSS Application Manager controls this state transition upon request of the SP System

Manager or the application AL system manager.
The Common Launch Application will either remove the application icon from the screen or

display it as un-selectable 5. If this was the last icon to be removed (i.e. this is the last
application to be suspended), the Common Launch Application should display "kiosk not
in service" type of screen.

2.4.3.6 Resume Transition (back to pre-suspended st ate)

The application is now allowed to be operational:
Only the System Manager (SP or AL) that has suspended the application can apply this state

transition.
The application will return to the previous state (the state in which the application was before

to be suspended).
If both system managers have suspended the application, (SP and AL), it needs to be

resumed by both of them before returning to its previous state (this is to resolve potential
conflict within operational rules of SP System Manager and AL System Manager).

The Common Launch Application will display the application icon as selectable if the
resultant state is AVAILABLE, and will either remove the application icon from the

5 To remove a button or make it un-selectable is a decision left to SLA agreement between platform
provider and application provider. It is recommended that the platform will make this option configurable.

 Interface Overview

Revision 1.3, June 2013 50

screen or display it as un-selectable5 if the resultant application state is UNAVAILABLE
or SUSPENDED.

2.4.3.7 Disable Transition (to DISABLED)

Used to disable an application (put it into penalty box) until human intervention occurs:
CUSS Application Manager will put the application in DISABLED state because of an

incorrect behavior such as:
Session time limit exceeded
Application threshold error exceeded
Etc.

CUSS Application Manager stops the application execution (i.e. unloads it).
The Common Launch Application will either remove the application icon from the screen or

display it as un-selectable5.

2.4.3.8 Stop Transition (to STOPPED)

Used to stop an application execution:
CUSS Application Manager put the application in STOPPED state upon request from the AL

application itself, its own AL system manager or the SP system manager.
CUSS Application Manager stops the application execution (i.e. unloads it).
The Common Launch Application will either remove the application icon from the screen or

display it as un-selectable5. If this was the last icon to be removed (i.e. this is the last
application to be stopped), the Common Launch Application should display "kiosk not in
service" type of screen.

2.4.3.9 Restart Transition

Rebooting the kiosk or restarting the CUSS platform activates this transition.
CUSS Application manager will put all applications, except those who were in DISABLED

state, in STOPPED state and start loading them. See Load Transition.

2.4.3.10 Periodic/Automatic restart of the applicat ion

If a kiosk application runs for a very long time (days or weeks) on a busy kiosk, it is possible that
the environment in which is running is susceptible to memory leaks or other resource problems
that are not directly caused by the CUSS application. This is particularly a problem with
browser-based applications– after running for days and thousands of page transitions, the
browser uses too many resources and can affect the operation of the entire system.

As Internet Explorer is in widespread use, and it is the cause of many of the resource issues for
browser-based applications, CUSS 1.2 makes the following recommendation for platform and
applications. Because CUSS applications cannot restart themselves:

1. CUSS platforms should implement a feature under which applications running on a kiosk
are restarted on a regular basis. This could be done by time of day, day of week, a certain
number of transactions, by monitoring the resource usage of the process, or by other
rules.

 Interface Overview

Revision 1.3, June 2013 51

2. Applications provider will request that their application be restarted on a regular basis

(nightly, etc.) as part of their deployment instructions, if required.

3. An application shall be able to run for an entire day on a busy kiosk, without requiring a
restart (for example, 100-200 transactions.)

4. The intent of this Automatic Restart recommendation is only to address the problems

inherent to the browser or java application “container” on the platform. Automatic
restarting shall not be used as a substitute solution for poor application implementations:
many resource leaks are due to improper application development and the application
supplier shall attempt to correct these problems where possible.

Even though CUSS 1.3 specifies that IE8 be the default browser environment used on the kiosk,
platform providers may choose to investigate and use alternate browser containers (that remain
based on the IE8 rendering engine) for CUSS applications running on their kiosk.

These alternate browser containers might not exhibit the negative tendencies of the complete
Internet Explorer product. (Some vendors already deploy a custom browser which, despite being
based on Internet Explorer browser engine, does not exhibit the same resource problems as
Internet Explorer.)

 Interface Overview

Revision 1.3, June 2013 52

2.4.4 Modes of Operation for applications

A CUSS applications running on a kiosk can operate in one of three modes of operation: multi-
application mode, single-application mode (SAM) and dedicated single-application mode. A
separate application-transfer mode is also possible in combination with any of these three modes
of operation.

These different modes allow a CUSS kiosk to run a different style of operation to meet the
various needs of the airport and airline. For example, a kiosk running at a dedicated airline
counter may operate in single-app mode, whereas a shared kiosk in a common area or parking
garage will usually operate in multi-application mode. It is also possible that a CUSS kiosk
changes from one mode of operation to another at various times of the day or week, without
restarting the individual CUSS applications.

It is important that CUSS applications not be written to assume any particular mode of operation.
In fact, a CUSS application does not need and should not implement any special logic to operate
in either of these modes. Dedicated single-application mode, however, does require some
additional application logic.

The decision about the mode in which an application is run on a kiosk is subject to the control of
the CUSS kiosk provide and negotiation with the CUSS application providers. CUSS
applications cannot “select” the mode they need at start-up.

2.4.4.1 Media-off-roller (MOR)

This section is taken from CUSS 1.0 Addendum A.1.5.

To support the various modes of operation, a new Media-off-Roller (MOR) concept is required.
This concept allows certain key devices to be enabled and receive before any CUSS application
is in the ACTIVE state, and defines the mechanism by which the next ACTIVE application can
access that device information.

An application uses the same CUSS device component logic whether or not MOR is place on the
kiosk. From the applications’ point of view, the kiosk devices behave identically whether or not
Media-off-Roller is in use. As such, CUSS applications must not have any “special” handling for
kiosk component beyond its normal behaviour.

For information on how a CUSS application handles device data and events, please see the
complete documentation of device component behaviour below.

The operational goal of Media-off-Roller is to allow a CUSS kiosk to behave similarly to a
legacy airline kiosk, where devices were enabled at all times. Where listed below, a CUSS 1.2
platform must support Media-off-Roller, and this support must be implemented in compliance
with the following requirements:

 Interface Overview

Revision 1.3, June 2013 53

1. MOR must be enabled only if an application requires it.
2. MOR must be turned on only for those devices that an application expects. For example,

the card reader and barcode scanner may be used, but not the ATB2 coupon reader.
3. If the CUSS kiosk enables a device for MOR, and receives input from the kiosk user

(such as a card read) then the CUSS platform must:

a. Generate all device component events that would normally be generated for the
same device behaviour for an ACTIVE application (these events may occur on
one or more linked components, as appropriate.)

b. Queue up all these events in the order they are generated.
c. Activate the target airline application using the normal ACTIVE transition.
d. Wait for the ACTIVE application to call the enable() directive.
e. Broadcast to the application all queued events for that component.

For example, if Media-off-roller is used for a dip-style card reader, then the platform will enable
the reader’s MediaInput component prior to an application being active:

1. The kiosk user inserts a card
2. The platform generates and queues up the relevant components events such as

MEDIA_PRESENT, DATA_PRESENT and MEDIA_ABSENT events
3. The CLA immediately activates a CUSS application
4. The ACTIVE application calls enable() on the MediaInput component as part of its

activation logic.
5. The platform broadcasts all queued events (MEDIA_PRESENT, etc) for that component.
6. The application receives the events via its component listener, and processes the

DATA_PRESENT as part of its business logic.

2.4.4.2 Multi-application Mode

This is the traditional mode of operation of a CUSS kiosk. In this mode, the Common Launch
Application (CLA) presents an application menu with one or more airline selection buttons, and
the correct CUSS application is activated.

A CUSS 1.0 compliant platform must be able to provide this mode of operation, as it is the
normal assumed behaviour of a common-use kiosk.

A CUSS platform may allow Media-off-Roller in multi-application mode, but this is an optional
feature. If MOR is enabled, a specific application (possibly based on the type of data received,
for example a frequent flyer card, or based on platform configuration) is activated immediately.

 Interface Overview

Revision 1.3, June 2013 54

2.4.4.3 Single-application Mode (with Common Launch)

This section is taken from CUSS Addendum A.1.5.

In this mode of operation, only a single CUSS application is running on the kiosk. When the
application is not active, the Common Launch Application displays an “attract loop” that is
controlled by the platform. When required, the CUSS application is activated immediately
without displaying an airline selection menu.

A CUSS 1.2 compliant platform must be able to provide this mode of operation.

The CUSS platform must support Media-off-Roller in single-application mode. MOR must be
configured and enabled for the devices needed by the application, if requested by the application.

2.4.4.4 Dedicated or Persistent Single-application Mode

This section is taken from CUSS Addendum A.1.10.

As an extension to Single-application Mode, Dedicated Single-application Mode allows a
single CUSS application to be active at all times with its screen visible to the user,
instead of the kiosk Common Launch Application. In this special mode of operation, the
CUSS platform and application must implement some additional logic to ensure smooth
operation.

A CUSS 1.2 compliant platform must be able to provide this mode of operation. This
mode is sometimes called Persistent Single-application Mode.

When running in this mode, a compliant CUSS platform must:

1. Designate and run a single CUSS application in dedicated mode, in agreement
with the application provider.

2. Transfer the application to ACTIVE state as soon as the application has reached
the AVAILABLE state, without waiting for user input.

3. Include the notification string “SINGLEAPP MODE” in the ACTIVE transition
(see below.)

 Interface Overview

Revision 1.3, June 2013 55

4. Even though the application is active, do not start the SESSION and KILL
timeouts until:

5. Any component is enabled by the application

6. The application issued the ACTIVE_ACTIVE transition

7. The platform needs the application to revert to AVAILABLE for any reason (for
example, to switch to another mode of operation.)

8. In all other aspects of operation, the platform shall behave in accordance with the
full CUSS specification.

To be able to run in dedicated single-application mode, a compliant CUSS application
must:

1. Detect and use the “SINGLEAPP MODE” notification string during the ACTIVE
transition from the platform.

2. Issue the ACTIVE_ACTIVE transition as soon as a customer is detected.

3. Transition to AVAILABLE if and only if a real transaction is finished. It must
NOT perform this transition as a result of a screen timeout on the initial screen if
a customer is not present.

4. Detect and process the SESSION_TIMEOUT event if it receives one from the
platform.

5. In all other aspects of operation, the platform shall behave in accordance with the
full CUSS specification.

The platform shall consider a transaction started, and start the SESSION and KILL
timeout calculation, whenever any of the following conditions occurs first:

1. The application indicates ACTIVE_ACTIVE as an explicit start to the transaction

2. The platform broadcases MEDIA_PRESENT or DATA_PRESENT to the
application, for any component.

3. There have been ten (10) touches on the touchscreen since the application was
activated.

Media-off-Roller is not used in dedicated single-application mode, as the application is
always active. The CUSS platform must support Media-off-Roller in single-application
mode. MOR must be configured and enabled for the devices needed by the application, if
requested by the application.

 Interface Overview

Revision 1.3, June 2013 56

2.4.4.5 Application Transfer Mode

This section is taken from CUSS Addendum A.1.50.

The Application Transfer Mode allows trusted applications to pass control in the ACTIVE state
from one application to another automatically, instead of requiring user input on the Common
Launch menu. This mode of activity applies in multi-application mode, single-application mode,
and even dedicated single-application mode.

Its primary purpose is to allow multiple CUSS applications to coordinate their transactions, as is
sometimes needed for proper handling of code-share flights, irregular or alliance operations, or
other situations where a passenger cannot be processed within the application they selected.

This mode also allows a new class of CUSS applications, “intelligent” programs that identify
which actual CUSS application is the correct one to process a passenger. For example, a ground
handler, consolidator or airport could create an application that determines which charter
operator, alliance partner, or airline application is required to process a passenger, based on such
parameters as time-of-day, destination, flight number, frequent flyer card, etc.

A CUSS 1.2 compliant platform must be able to provide this mode of operation, but it must be
turned off by default for all CUSS applications. This mode can be combined in single-application
mode (dedicated or not) as well as multi-application mode.

To implement this mode of operation, a CUSS platform must:

1. Implement a control or configuration mechanism that explicitly allows specific
application transfers, by application. For example, application A may be able to transfer
to B, but not C or D, whereas application B is able to transfer to A and C. By default,
transfers must not be allowed.

2. All other applications that could be activated by transfer must be running on the kiosk,
even if the main application is running in single-application mode, or running in multi-
application mode but without a Common Launch Application selection button.

3. Support the generateEvent() request with the structure listed below to identify transfer
requests from applications.

4. Respond to the generateEvent() request with the correct response code as listed below.
5. If a transfer request is accepted, the platform must immediately activate the new

application as soon as the current ACTIVE application (making the request) transitions to
AVAILABLE state.

6. The ACTIVE transition message to the new application must include the transfer data as
provider in the transfer request, verbatim, without any changes or additions.

7. Any subsequent transfer request from the current ACTIVE application cancels the
existing transfer request, regardless of the contents of the generateEvent() event.

To transfer between themselves, CUSS applications must:

1. Create the correct generateEvent() invocation to request the transfer.

 Interface Overview

Revision 1.3, June 2013 57

2. Include in that request any transfer data that needs to be sent to the new application.
3. Interpret the return code from this request in accordance with its business logic

requirements.
4. Issue a second generateEvent() request if ever the transfer needs to be cancelled.
5. Transition to AVAILABLE to allow the platform to activate the new application.
6. Examine the ACTIVE notification event data to detect, extract and use any transfer data

that was provided by the previous application.

Application Transfer generateEvent() contents

To request a transfer, an application must invoke and the CUSS platform must support the
generateEvent() directive as follows:

appRef CUSS application reference of the ACTIVE application making the
transfer request

ie.eventCode Numeric value ACTIVE_TRANSFER from codes.idl (1001.)

ie.kioskID
Kiosk ID structure of the app that the current active application wishes
to transfer to. Specifically, the values for ie.kioskID.companyCode
and ie.kioskID.applicationName must refer to the target application.

ie.eventData

Event data that the active application wants to transfer to the target
application. This is an arbitrary “datastream” structure (CORBA any)
so any information in any agreed-upon format can be transferred
between applications. The platform stores and forwards the event data
unmodified.

To be consistent with the existing “activation notification” design of
CUSS (see Addendum A.1.4) it is recommended that the transfer event
data be a msgDataType array with one record whose value is a
freeform string.

Application Transfer generateEvent() return code

A CUSS platform must respond to the application transfer event request using the appropriate
response code as defined:

RC_NOT_SUPPORTED Application transfer requests not configured/supported on this kiosk.

RC_REFERENCE
The appRef or ie.kioskID values refer to applications that aren’t
configured on the kiosk.

RC_STATE The application making the request is not currently ACTIVE.

RC_UNAUTHORIZED
The application making the request is not allowed to transfer control to
the requested target application. CUSS platforms should implement
proper permissions control.

RC_SHARE
The request is canceling a previous transfer request made by the
requesting application, which has not yet ended its session.

RC_ERROR
The target application is not in the AVAILABLE state, so cannot be
activated. Applications cannot transfer control to themselves (to
extend total session time, for example.)

RC_OK
The transfer request is granted and the platform will activate the target
application as soon as the requesting application ends its session.

RC_PARAMETER Existing response for CUSS 1.0 or 1.1 platforms that do not recognize

 Interface Overview

Revision 1.3, June 2013 58

code 1001.

2.4.4.6 Multiple Application Brands

This section is taken from CUSS Addendum A.1.4.

It is possible that a single CUSS application supports multiple “brands” as part of its business
logic, to cater to different types or categories of customer. For example, some airlines have
created distinct operating brands (regional flights vs. mainline flights) or some ground hander
applications may handle operations for multiple airlines.

To allow an application to display the correct branding when it is active, a Common Launch
application in multi-app mode can be configured with multiple buttons that activate the same
application. To activate different brands, these buttons are configured to activate the same
application but with a different notification string. These notification values are provided as part
of the application.

A CUSS 1.2 compliant platform must be able to support multiple button brands in multi-
application mode.

To implement this mode of operation, a CUSS platform must:

1. Support a configuration element that sets the brand notification string for each button on
the Common Launch application menu.

2. When a button is selected, the brand notification string for that button is included in the
ACTIVE transition event for the target application.

To support this mode of operation, a CUSS application must:

1. Provide to the kiosk administrator the list of brands and exact notification strings it
supports.

2. Detect and process the brand notification string while processing the ACTIVE transition
event.

3. Support the possibility that extra string data is provided during ACTIVE notification, in
addition to the brand notification.

2.4.4.7 One Application Instance per Process

This section is taken from CUSS Addendum A.1.4.

In some cases, a single kiosk application may need to provide the user interface or logic for more
than one airline. This often occurs for applications that provide LDCS self-service check-in at

 Interface Overview

Revision 1.3, June 2013 59

the airport, but can be used in other areas such as airlines with distinct brands, and as the result
of mergers.

On a CUSS kiosk, even if an application “represents” multiple airlines, it must only connect to
the platform as a single application (via level(), initrequest(), etc.) In other words, the same
system process cannot connect to the CUSS platform as two separate applications “A” and “B”,
and this restriction applies to any child processes launched by the application. This restriction is
to allow the kiosk platform to properly track and managed application processes running on the
kiosk and the CUSS objects and resources assigned to those processes.

To use multiple brands, application providers should make use instead of the “ACTIVE Brand
Notification” feature in CUSS 1.2, discussed in Section 2.4.5.2 below. If this is not sufficient,
then separate instances of the same application code shall be launched as completely separate
applications (using, for example, different command line parameters or start-up URLs to set the
different behaviour.)

 Interface Overview

Revision 1.3, June 2013 60

2.4.5 Special State Transitions and Notification St rings

To implement some of the new features in CUSS 1.2, the concept of “notification string” is
added to the ACTIVE transition event, as well as a new transition to indicate the start of a
customer transaction when running in dedicated single-application mode.

2.4.5.1 ACTIVE Transition Notification String

To pass information from the platform to the active application during the ACTIVE transition,
the CUSS platform can embed string data in the notification event.

This notification string may be used to indicate multiple types of data (brand, language, mode of
operation) so applications cannot depend on “exact matches” when processing the activating
notification.

String notification is set by including the string as the first record of a msgDataType object
inserted into the eventData field of the ACTIVE transition event, which is sent by the CUSS
platform to the CUSS application event listener at activation time. If the application needs this
data, the application must extract and analyze this string and take appropriate action as required
by its business function.

A platform that provices an active notification string must include the prefix
“NOTIFICATION=” before the notification string, to allow applications to quickly determine the
correct notification data (as different from

2.4.5.2 ACTIVE Brand Notification

This section is taken from CUSS 1.0 Addendum A.1.4.

When an application is activated from a multi-application mode menu button which has been
configured with a brand notification value (as supplied by the CUSS application provider during
initial setup) this value is included in the activation notification string.

This data is added to, and does not replace, any other notification string data included by the
platform during activation.

The application can use this value to change its look, feel, or behaviour as it sees fit.

 Interface Overview

Revision 1.3, June 2013 61

If there is also an ACTIVE Transition Notification String, the Brand Notification is added after
that string without any additional prefix.

If there is NOT also an ACTIVE Transition Notification String, the Brand Notification string
must include the prefix “NOTIFICATION=” to allow applications to quickly identify the
notification data.

2.4.5.3 ACTIVE Language Notification

This section is taken from CUSS 1.0 Addendum A.1.16.

If the Common Launch application supports its own language selection option on the selection
menu or attract screen, it should notify the active application of which language was selected by
the user. This can avoid an additional language selection within the application, which could
frustrate the user.

The language notification string must be in the format “LANGUAGE=LanguageTag”. This
LanguageTag must be a string that is compliant with IETF RFC3066 “Tags for the Identification
of Language” such as “en”, “en-ca”, “fre-ca”, etc. See http://www.ietf.org/rfc/rfc3066.txt for
more information.

This data is added to, and does not replace, any other notification string data included by the
platform during activation.

The application can use this value to change its look, feel, or behaviour as it sees fit. Typically, it
would be used to select and activate the appropriate language within the CUSS application (if
supported.)

2.4.5.4 ACTIVE Dedicated Single-app Mode Notificati on

This section is taken from CUSS 1.0 Addendum A.1.10.

If an application is activated in Dedicated Single-application Mode (see above) then the CUSS
platform must include the notification string “SINGLEAPP MODE” in the ACTIVE transition.

This data is added to, and does not replace, any other notification string data included by the
platform during activation.

Because the application running in this mode must behave slightly differently, a kiosk shall only
operate in this mode if it is known that the CUSS application supports this notification, as

 Interface Overview

Revision 1.3, June 2013 62

indicated by the application provider. An application must then use this dedicated single-
application mode notification string to implement the compliant behaviour (see above.)

ACTIVE_ACTIVE Transaction Start Message

This section is taken from CUSS 1.0 Addendum A.1.10.

An active application running in dedicated single-application mode must use the notify()
directive while active to indicate to the platform that a customer transaction has begun. The
numeric constant value to use is 132, which will be added to CODES.IDL as ACTIVE_ACTIVE
in CUSS 2.0.

The following behaviour is required for CUSS 1.2 compliant platforms and applications.
Previous versions shall return RC_PARAMETER, as would be the case for any other
invalid/unknown code passed to the notify() directive.

1. This event code is only valid when called by an ACTIVE application running in
dedicated single-app mode. In all other cases, the platform shall return RC_DENIED.

2. The numeric value of ACTIVE_ACTIVE is 132.
3. The session and kill timers for the current session shall only start when

ACTIVE_ACTIVE is received.
4. The platform can issue SESSION_TIMEOUT at any time if ACTIVE_ACTIVE is not

received.
5. If the application has already called this function in the current session, the platform shall

return RC_DENIED on the second and subsequent calls.
6. Once ACTIVE_ACTIVE is called, the SESSION and KILL timeout events shall be

generated as per the timeout values returned to the application during initialization (just
like any regular non-SAM session.)

7. The platform can use ACTIVE_ACTIVE to accurately track application session times,
etc.

2.4.5.5 ACTIVE Application Transfer Notification

This section is taken from CUSS 1.0 Addendum A.1.50.

If an application is activated in response to a transfer request from another application, the
ACTIVE notification event must include in its eventData structure the exact data object provided
by the original application in its request.

This data completely replaces any other notification data present in the activation. It is the
application’s responsibility to parse, analyze and use the transferred data as required by its
business function. For example, this data could include passenger name or booking data, in a
format that is known to both applications.

 Interface Overview

Revision 1.3, June 2013 63

2.4.5.6 Application Status “Reason” Indicator

This section is taken from CUSS 1.0 Addendum A.1.42.

One challenge faced in maintaining common-use kiosks is to help the kiosk provider determine
why the applications running on its kiosk are not operating normally (not AVAILABLE, for
example.) This is an issue because applications have their own business logic and controls which
may affect the availability of the application beyond simple conditions like device errors or paper
supply problems.

So a goal is to provide a mechanism for a CUSS application to indicate simple, human-readable
text messages that summarize why an application is in a particular state. For example, these
could be something like: “Outside of service hours”, “Kiosk device not found (ATB printer)”,
“Kiosk device out of service (passport reader)” or “Airline DCS Host not reachable”.

Any such indication is completely optional, and the contents of the notification are up to the
application provider. For example, an application does not need to reveal sensitive information
like “DCS system too busy.” An application can include such things as detailed error codes,
URL links to monitoring pages, or any other information they choose.

It is up to the CUSS platform provider to implement a system management tool that then
properly exposes this useful information, when provided by the applications, to the kiosk
administrator. This information would usually be used for live monitoring and logging purposes,
and would not be usually displayed to the kiosk user (such as on an out-of-service screen.)

The proposed mechanism is to use the generateEvent() directive with a custom eventCode value.

appRef
CUSS application reference of the application or system manager
setting the reason text.

ie.eventCode Numeric value STATE_EXPLANATION from codes.idl (1000.)

ie.kioskID

Kiosk ID structure of the application for which the reason text is
being set. Specifically, the values for ie.kioskID.companyCode
and ie.kioskID.applicationName must refer to the application.
This allows airline system managers to set reason text for the
applications it manages.

ie.eventData

Event data that includes the plain text reason as the first record in
a msgDataType structure. Multiple records can be used (between
application and its system managers) but only the first record will
be used by the CUSS platform and management tools.

The return code from the platform shall be as follows:

RC_NOT_SUPPORTED Application reason text method not supported by platform.

RC_REFERENCE
The appRef or ie.kioskID values refer to applications that
aren’t configured on the kiosk.

 Interface Overview

Revision 1.3, June 2013 64

RC_UNAUTHORIZED
The application making the request is not allowed to set the
reason text for the requested target application.

RC_OK
The request is granted and the platform maintains the reason
text until the target application returns to AVAILABLE or
ACTIVE state.

RC_PARAMETER
Existing response for platforms that do not recognize code
1000 (older platforms prior to CUSS 1.2.)

This event will be broadcast to the callback interfaces of the application itself and all service
provider and application system managers for that application. The platform itself may choose to
broadcast its own reason text event when setting the application to SUSPENDED, STOPPED or
DISABLED.

2.4.5.7 Application Status “Transaction” Indicator

For the same reasons as listed in Section 2.4.5.6, it is useful to allow an application to report to
the CUSS platform a description of the result of the latest transaction. This can also assist in
analyzing the behaviour of a kiosk application, by indicating the result of the application’s most
recent transaction. For example, it could be “Passenger not found” or “Screen timeout” or “Too
late for check-in.” The message would be tied to the current (or most recent) time during which
the application was ACTIVE

Any such indication is completely optional, and the contents of the notification are up to the
application provider. For example, an application does not need to reveal sensitive information
like individual passenger names or PNRs. An application can include such things as detailed
error codes, URL links to monitoring pages, or any other information they choose.

It is up to the CUSS platform provider to implement a system management tool that then
properly stores and exposes this information, when provided by the applications, to the kiosk
administrator. This information would usually be used for live monitoring and logging purposes,
and would not be usually displayed to the kiosk user (such as on an out-of-service screen.)

The proposed mechanism is to use the generateEvent() directive with a custom eventCode value.

appRef
CUSS application reference of the application or system manager
setting the reason text.

ie.eventCode
Numeric value TRANSACTION_EXPLANATION from
codes.idl (1002.)

ie.kioskID

Kiosk ID structure of the application for which the reason text is
being set. Specifically, the values for ie.kioskID.companyCode
and ie.kioskID.applicationName must refer to the application.
This allows airline system managers to set reason text for the
applications it manages.

ie.eventData

Event data that includes the plain text reason as the first record in
a msgDataType structure. Multiple records can be used (between
application and its system managers) but only the first record will
be used by the CUSS platform and management tools.

 Interface Overview

Revision 1.3, June 2013 65

The return code from the platform shall be as follows:

RC_NOT_SUPPORTED Application reason text method not supported by platform.

RC_REFERENCE
The appRef or ie.kioskID values refer to applications that
aren’t configured on the kiosk.

RC_UNAUTHORIZED
The application making the request is not allowed to set the
reason text for the requested target application.

RC_OK
The request is granted and the platform maintains the reason
text until the target application returns to AVAILABLE or
ACTIVE state.

RC_PARAMETER
Existing response for platforms that do not recognize code
1002 (older platforms prior to CUSS 1.2.)

This event will be broadcast to the callback interfaces of the application itself and all service
provider and application system managers for that application. The platform itself may choose to
broadcast its own reason text event when setting the application to SUSPENDED, STOPPED or
DISABLED.

2.4.5.8 Automed Remote Update VERSION_EXPLANATION

CUSS 1.3 adds a new APPLICATION_VERSION indicator event that applications can generate
at startup to report their current version to the platform, and to obtain Automated Remote Update
parametes back from the platform.

Applications must generate this event at startup if they wish to perform Automated Remote
Updates. Otherwise this request is optional for non-ARU applications.

The proposed mechanism is to use the generateEvent() directive with a custom eventCode value.

appRef
CUSS application reference of the application or system manager
setting the reason text.

ie.eventCode
Numeric value VERSION_EXPLANATION from codes.idl
(1003.)

ie.kioskID

Kiosk ID structure of the application for which the version text is
being set. Specifically, the values for ie.kioskID.companyCode
and ie.kioskID.applicationName must refer to the application.
This allows airline system managers to set version text for the
applications it manages.

ie.eventData

Event data that includes the plain text version string as the first
record in a msgDataType structure. Multiple records can be used
(between application and its system managers) but only the first
record will be used by the CUSS platform and management tools
as the version indicator.

The return code from the platform shall be as follows:

RC_NOT_SUPPORTED Application version text method not supported by platform.

RC_REFERENCE
The appRef or ie.kioskID values refer to an application that is
not configured on the kiosk.

RC_UNAUTHORIZED The application making the request is not allowed to set the

 Interface Overview

Revision 1.3, June 2013 66

version text for the requested target application.

RC_OK
The request is granted and the platform records the specified
version as needed for monitoring or ARU purposes.

RC_PARAMETER
Existing response for platforms that do not recognize code
1003 (older platforms prior to CUSS 1.3.)

This event will be broadcast to the callback interfaces of the application itself and all service
provider and application system managers for that application.

The platform will provide an output even containing the parameters controlling automated
remote updates the the application for which the version was specified. The output event will
contain:

oe.eventCode
Numeric value VERSION_EXPLANATION from codes.idl
(1003.)

oe.kioskID
Kiosk ID structure of the application for which the version text
was set.

oe.eventData

The output event data will include a msgDataType structure with
one or more records indicating the ARU parameters in effect for
the application:

• ARU time window in HHMM-HHMM format
• ARU bandwidth limit in KB/sec
• ARU suggested CPU limit in 0-100 percentage

In particular, the oe.eventData msgDataType response must be in this format:

• msgDataType[0] will contain “ARUTIME=HHMM,HHMM”
• msgDataType[1] will contain “ARUBANDWIDTH=xx”
• msgDataType[2] will contain “ARUCPU=xx”

Additional keywords may be added in the future, as needed to support the ARU business
process.

2.4.5.9 Automated Remote Update UPDATE_REQUEST

CUSS 1.3 adds a new UPDATE_REQUEST event that applications must call before attempting
to perform an Automated Remote Update (ARU).

The platform will respond whether the request for ARU is granted. An application that does not
receive the correct response from this request must not use the ARU process for CUSS 1.3
described in Chapter 9.

The proposed mechanism is to use the generateEvent() directive with a custom eventCode value.

appRef CUSS application reference of the application or system manager
making the ARU request.

 Interface Overview

Revision 1.3, June 2013 67

ie.eventCode Numeric value UPDATE_REQUEST from codes.idl (1004.)

ie.kioskID

Kiosk ID structure of the application for which an automated
update is requested. Specifically, the values for
ie.kioskID.companyCode and ie.kioskID.applicationName must
refer to the application. This allows airline system managers to
request updates for the applications it manages.

ie.eventData
Event data that includes a msgDataType structure that includes
information about the ARU request.

In particular, the ie.eventData msgDataType request includes information in this format:

• msgDataType[0] is required and must describe the version string of the “to be” version
that would be in place after the update.

• msgDataType[1] is optional and can include any freeform information about the update
as required. The platform may record this information for monitoring purposes.

The platform can make use of the following information to track and determine if the ARU
operation requested is permitted:

• The kiosk identifier, station code
• The date and time of the request
• The applicationName and companyCode reported by the application
• The version reported by the application at start
• The version requested by the application as part of the ARU process

The return code from the platform shall be as follows:

RC_NOT_SUPPORTED

The application did not report VERSION_EXPLANATION at
startup or did not set a “to-be” version in the request, or the
versions indicated are not recognized but the platform’s ARU
oversight/notification process.

RC_REFERENCE
The appRef or ie.kioskID values refer to an application that is
not configured on the kiosk.

RC_UNAUTHORIZED
The application making the request is not allowed to request
an update for the requested target application.

RC_STATE
The ARU request was made outside the time window allowed
for updates.

RC_SHARE
The platform has a local exemption in effect that is
temporarily suspending ARU in this kiosk.

RC_OK
The request is granted and the platform records the specified
version as needed for monitoring or ARU purposes.

RC_PARAMETER
Existing response for platforms that do not recognize code
1004 (older platforms prior to CUSS 1.3.)

This event will be broadcast to the callback interfaces of the application itself and all service
provider and application system managers for that application.

 Interface Overview

Revision 1.3, June 2013 68

Prior to returning RC_OK it is a platform responsibility to carry out any maintenance tasks
needed to comply with the ARU Business Requirements described in Chapter 9. If the platform
responds RC_OK to this request, the application may proceed with its ARU process, but is not
required to do so.

If and once the application ARU process is complete, the application may request a process
restart using the normal notify() requests transitioning to the STOP/RESTART state transition.

Upon startup, the application shall report its application version using the
VERSION_EXPLANATION event described above. It is not a fault condition if the version
reported by the application at this time is the same as before, because there are numerous
conditions in which the application could restart prior to its ARU process being complete.

 Interface Overview

Revision 1.3, June 2013 69

2.5 System Manager Interface (SMI)
CUSS provides the System Manager interface (SMI) to allow remote management of the CUSS
kiosk environment. This interface allows access to the current state and status of all components
and applications. It also provides the capability to manage AL applications and device
components. This interface is available to the System Provider (SP) System Manager and Airline
Provider (AL) System Manager. However, the System Manager Interface restricts access based
on the current activity of the CUSS kiosk and the rights assigned to it. For instance, if there is an
AL application active the SP System Manager cannot exercise any device components. As well,
based on security policy, an AL System Manager cannot manage unauthorized AL applications.
The Directives and Events applicable to SP and AL System Managers are detailed in Section Ch
3:.
SP/AL System Managers connect to SMI as their first CORBA object using CORBALOC as
detailed in Section 3.4. The capabilities offered to SP and AL System Mangers are outlined in
the following sections:

2.5.1 SP System Manager

The SP System Manager can load, stop, suspend, and resume AL applications. However
certain functions may be limited by the CUSS platform. For example, if the AL System
Manager suspends an application, the SP System Manager cannot resume it.

The SP System Manager can register its listener(s) to receive all events including alarms and
alerts.

The SP System Manager is allowed to perform maintenance functions on device components
when the CUSS kiosk is not in use. The SP System Manager must first suspend or stop
all application during this operation, as it cannot relinquish control of the device
components to any AL application. An AL application requires an exclusive control of
device components when it is active. The maintenance could include such items as test
prints or print head cleaning. This may vary depending on the type of device.

2.5.2 AL System Manager

AL System Manager can load, stop, suspend, and resume AL applications that are associated
to AL System Manager by configuration. Again AL System Manager cannot resume an
AL application that is suspended by SP System Manager.

AL System Manager can register its listener(s) to receive events, alarms and alerts however it
will only receive public events and private events belonging to those AL applications that
are associated to the AL System Manager by configuration.

AL System Manager is not allowed to perform maintenance functions on device components.

2.6 Device Component Interface (DCI)
The Device Component Interface is based on a defined virtual environment for any CUSS self-
service application. This section illustrates this virtual environment including the description of
all states virtual component can be and their associated state transitions. A component state
diagram is also illustrated in Figure 12.

 Interface Overview

Revision 1.3, June 2013 70

2.6.1 Virtual Component Concept

A specific CUSS implementation maps, on behalf of all CUSS self-service applications, the
virtual environment against the real environment components. For example, a virtual receipt
printer could be mapped to a real ATB2 device or a GPP device; a real printer with three bins
with three different stock will be seen by the self-service application as three distinct printers,
two real printer bins can be seen as one virtual bin allowing to use the stock of the second bin
when the first one is out of stock, etc., all of which are controlled by the CUSS environment
itself.
In addition, the CUSS component management concept includes virtual component chaining. For
example, printer bins are seen as feeder component that can offer the required paper to a printer,
which is a MediaOutput component. When the printing is completed, the document can be
offered to a Dispenser component, which can be an escrow (if installed), and then offered to the
user or to a Capture component (a capture bin - if installed)
All of these virtual components can be implemented in one real device or in many real devices.
All virtual components related to the same real peripheral must have the same Real Component
Name, allowing the AL application (if required) to know that fact. In the same manner, all linked
virtual component will be cross linked in the virtual component table via the virtual component
link table allowing the application to internally build the virtual component chaining without any
requirement to know if these virtual components are implemented in one or many real devices
A real component (e.g. peripheral device) could be mapped to one or many virtual components.
By defintion, there should one virtual component per real component per function per media type
(the latter applies only for media-based peripherals). For instance, assume an ATB2 device with
escrow supports coupon reading and revalidation, printing boarding passes/tickets/receipts, and
capturing printed documents if the user fails to remove them. This ATB2 device will then be
mapped to a number of virtual components as illustrated in Figure 11. The block diagram in
Figure 11 also demonstrates the component chaining and linkage among the virtual components.

 Interface Overview

Revision 1.3, June 2013 71

MediaOutput
(stock 1 printer)

MediaOutput
(stock 2 printer)

MediaOutput
(stock 3 printer)

Feeder
(stock 1 bin)

Feeder
(stock 2 bin)

Feeder
(stock 3 bin)

MediaOutput
(Slot printer)

MediaInput
(Slot reader)

Dispenser Dispenser

Capture

User

ATB2 Device Escrow Device

Figure 11 ATB2 Device with Escrow, 3 bins with dis tinct stocks

 Interface Overview

Revision 1.3, June 2013 72

Another example is an ATB2 device with three bins that supports printing documents of two
distinct types of stock. This device will be mapped to the following virtual components:

Feeder 1 associated with the first two real bins containing first stock type
Feeder 2 associate with the third real bin containing the second stock type
MediaOutput 1 (linked to Feeder 1)
MediaOutput 2 (linked to Feeder 2)
Dispenser (linked to MediaOutput 1 and MediaOutput 2)

Refer to Appx B:: Component Mappings to check how other real components are mapped to
virtual components.
The mapping from virtual to real environment is done by CUSS entities: object, method
(directive), etc. These entities are accessed by the self-service application via an interface call
(refer to Section Ch 3:: Interface Definition). These interfaces use object-oriented programming
techniques based on CORBA to implement functionality and events that define the CUSS work
environment for self-service application.
Only one action on one single stock type is allowed in one directive on one virtual component at
a time.
Please see Appendix D for information on printing multiple AEA documents (such as sequential
bag tags) via a single request.

As the interface know exactly which function is used for which purpose on which component,
the interface will be responsible for adjusting what is required to ensure the proper behavior of
the interface call. For example, in case of the ATB2 device illustrated in Figure 11 above,
assume MediaOutput 1 is a boarding pass printer linked to Feeder 1 that corresponds to Stock
type 1 (Boarding Pass). If the AEA data stream sent to MediaOutput 1 specifies stock type 2, the
implementation of the interface will adjust to make sure the data is printed on boarding pass
document (stock type 1), since MediaOutput 1 is a boarding pass printer. On another cuss
platform the boarding pass bin (Feeder linked to boarding Pass printer) may correspondent to
stock type 3 instead of 1, then the interface will have to adjust the data stream to use bin 3
instead.
It is all based on the fact that virtual components are implemented as object networking handled
by methods representing directives and events applying to real components and states. This
allows changing any kiosk implementation without changing any, well designed, self-service
application by modifying only the required CUSS interface implementation (underlying
methods).
All virtual component have standardized characteristics for a given device type. The CUSS
platform provides these characteristics to the application as well as allowing it to change some of
them if necessary. Refer to Section Ch 5:: Virtual Component Characteristics for a list of
characteristics per virtual component.

2.6.2 Some Device Component Interface Rules

All ATB and GPP printer interfaces whose virtual components are designated as boarding
pass printers, must support AEA data stream (with exclusion of magnetic stripe for GPP).
All virtual designated as bag tag printers must support AEA data stream

All GPP must support SVG/W3C standard formatting message.
Any document can be printed with:

 Interface Overview

Revision 1.3, June 2013 73

On ATB2 device: using AEA data stream
On GPP printer: using AEA or SVG data stream; the former must be implemented only if

no ATB printer is implemented in the kiosk, otherwise it is optional (for that kiosk)
Only ATB2 devices will use AEA data streams for reading.
Non-ATB readers (MediaInput) will use MSG data stream for reading.
Non-ATB printers (MediaOutput) will support a standard SVG data stream for printing.

Each MediaOutput component is associated with a Dispenser component even if the real
device does not have such real feature. In this case the printer output path is considered
as being the dispenser. Since the Dispenser component is not real, the offer directive is
not required to have the document delivered to the user.

The preceding paragraph applies also to MediaInput component that have to return media to
the user.

Native commands must not be used by AL application and will not be supported by
component interfaces.

Printer/reader memory management:
If ‘n’ ALs have an application on the printer/reader, each one will have 1/n of the

printer/reader memory.
Each AL will have a minimum of 120KB of memory available (this gives 6 PECTAB of

4K, 4 templates of 2K, 8 logos of 10K)
If an AL application needs to download a PECTAB, a logo or any other file on the

printer/reader and there is no more memory available, it is one of the requester AL
file that will be offloaded from its context in the printer/reader.

An item will be downloaded only once, CUSS interface will cache every time the
application does a download of the item and CUSS interface will retrieve the item if it
is not loaded on the printer/reader when required by the application.

Character sets:
Related Documents

ISO/IEC 10646-1 second edition
Unicode 3.0.0 (http://www.unicode.org)
The Common Use Self Service (CUSS) standard was developed to provide a platform for

application providers to write their applications once and to run that application on
any kiosk system around the world that complies to the CUSS standard. To support
the customers all other the world - especially those who are not familiar with the
English language - or to conform to national standards, application providers must be
able to write their applications in such a way, they can support different languages
and different character sets. This do not imply that all devices of a platform has to
support multiple languages or character sets only the ones that interact with the user
have to support this. Because most of the data streams in the airline industry are
ASCII-based, devices or their data stream that are already covered by another
standard (IATA, AEA...) don't have to support other character sets than ASCII. But
the operating system and the devices that are covered only by the CUSS standards
have to support at least ISO 8859-1 (Latin 1) and double-bytes. Those who have to
support other character set the use of Unicode 3.0.0 is mandatory. For compatibility
reasons to ASCII the use of Unicode UTF-8 encoding is mandatory. UTF-16 can be
converted to UTF-8 without lost of information.

 Interface Overview

Revision 1.3, June 2013 74

When no application, other than CLA, is active, all components are available to the SP
system manager only after suspending or stopping all applications.

2.6.3 Device Component State Description

Node Descriptions

State Description

RELEASED This is the initial state of a device component. Within the RELEASED state, the
component is ready to be acquired (for usage) by any application. Once a
component is acquired by an application, it does not prevent other applications to
acquire it at the same time. This means that multiple applications can acquire the
same component(s) at the same time.

Component query directive is NOT allowed in this state.

READY The READY state tells the application(s), that the component is now ready to receive
and execute any functions or directives given by a application. On receiving
directives, the component changes to the BUSY state and remains there, until the
function returns with either an error or OK.

Only the application holding the active token will be able to execute any exclusive
directives. All other applications will not have the permission to do so.

An unsolicited event may lead from READY directly to EVENTHANDLING and then
to UNAVAILABLE (e.g. manually switching off a printer).

Releasing the component must be possible by either the application or any
authorized platform component (e.g. when CUSS Application Manager disables the
application).

BUSY Completely transient state, which indicates any component activity (e.g.
reading/writing) that has been invoked by an application or any authorized platform
component.

Calling component query directive in this state should return the last known status.
All other directives will be queued if the request is valid.

EVENTHANDLING Also a transient state. Defines that a component has to handle an event after
detecting it. An event may be raised by a function invocation, an internal check
resulting in a component condition, due to an unsolicited event or an exception (e.g.
inserting a credit card or manually switching off a printer).

 Interface Overview

Revision 1.3, June 2013 75

Node Descriptions

State Description

UNAVAILABLE Defines an unrecoverable error condition that doesn’t allow any function to be
executed on the component. The events sent during the transition to this state allow
applications to decide whether to be selectable on the launch screen or not.
By receiving active error events from the real component device driver or carrying
out internal checks or by human intervention (e.g. remove paper Jam), the
component may become available on its own which may lead the component back
into the READY state.

UNAVAILABLE component was acquired before. Therefore, releasing the
component in this state must be possible.

Component query directive is allowed in this state.

2.6.4 Device Component State Diagram

The state diagram defines a common behavior of a CUSS component and not its implementation.
But it defines exactly when an event has to be sent and what kind of event it has to be. It also
defines the sequence in which events occur. The states, as viewed by the application, are used
only to define transitions and events.
In this diagram, dotted ovals represent transient states. Also, the event codes numbering in this
diagram is not related to the sequence in which the events may occur. The numbering is used
only to identify the different events. Refer to Section 3.7.2 for more detailed information about
these events.
The platform behavior will be the same regardless of what the application view of the virtual
component state (e.g., if the application thinks a component is READY while it is actually
UNAVAILABLE). This is to ensure that an application can use the state transition to know if a
method call was successful or not successful.

EVENT-
HANDLING

RELEASED

READY

BUSY

UNAVAILABLE
Acquire(Hard error): 8

Release: 4

Restart: 2

Restart
6

Acquire
7

Release
5

OK & soft error: 1

Unsolicited event

Hard error
3

Query

Function() FCT Result

Unsolicited
event

Figure 12 Device Component State Diagram (Applicat ion View)

 Interface Overview

Revision 1.3, June 2013 76

2.6.5 Device Component State Transition Description

State Transitions

Transition Description

Acquire A Component acquire directive is issued by the application. The component will either
move to READY or UNAVAILABLE state.

Release A Component release directive is issued by the application. The component will move into
RELEASED state.

Function This can be one of the following functions, depending on the component:
retain, offer for media based components

receive for input components

send for output components

enable, disable for user based components

test, setup, cancel, for all components that inherit from class Peripheral

query for all components.

The component will either stay in READY state or move into UNAVAILABLE state.

Unsolicited
Event

External events such as: card/coupon inserted, media jammed, device not reachable,
device is now OK, printer out of paper, paper is low, paper is OK now, etc.

Depending on the event, the resultant component state will be either READY or
UNAVAILABLE.

Restart Component is released by an authorized platform component. This may happened when
the system restarts or when CUSS Application Manager moves an application to
DISABLED state or when the application is stopped and its acquired virtual components
are not released by the application itself.
The component will move into RELEASED state.

 Interface Definition

Revision 1.3, June 2013 77

Ch 3: Interface Definition

This section defines the CUSS Interfaces of the various elements of the CUSS system. It includes
the following subsections:

 Data Structures Definitions
 Components Definition
 Management Interface (MIF) Directives
 Application Manager Interface (AMI) Directives
 System Manager Interface (SMI) Directives
 Device Component Interface (DCI) Directives
 Event Listener Interface (ELI)
 Media Device Behaviour and Event Sequence

AMI , SMI , and DCI are all based on directives issued by an application (AL or SM). ELI is the
interface that the platform will use to communicate with an application (AL or SM). Refer to
Appendix C for the actual CORBA IDL listings for all the data structures, components,
directives and events.

 Interface Definition

Revision 1.3, June 2013 78

3.1 Data Structures Definitions
This section presents data structures used at many places in the directives presented in this
section. Field length and values are listed only when required for naming standard purposes.

3.1.1 Reference

It is an alias type for string used for application and component references.

3.1.2 Name

It is an alias type for string used for name definitions.

3.1.3 Timeout

Timeout: number <0: negative of the timeout value, asynchronous call
 0: no timeout, synchronous (blocking forever) call
 >0: timeout value; synchronous call
(Timeout values are expressed in milliseconds.)

3.1.4 Application Token

Application token: reference
(The CUSS Application Manager assigns this token to the application. It is used as an access
control mechanism to directives available to applications)

3.1.5 Correlation

Correlation: any
(This is set by the application when issuing a directive (registerEvent or acquire) to
register its listener, and it allows for the correlation of events to a specific directive issuance. It is
to be used for comparison only as user-defined private identification.)

Note 1 (from CUSS 1.0 Addendum A.1.32):
CUSS application can insert whatever data they choose within this parameter to the acquire() and
registerEvent() calls. Huge data objects should not be used, however, for performance reasons.
Applications typically use a String or Long object as a correlation parameter.
The platform will do no data/type checking on this value, as it is application-specific, and the
platform will return this same correlation data in each event broadcast to the event listener
created in response to any of these calls. The application can then, if needed, analyze its
correlation values as part of application event handling.

3.1.6 Vcomp Reference

VcompReference: reference

(This is the CORBA reference to the Virtual component (IOR).)

 Interface Definition

Revision 1.3, June 2013 79

3.1.7 Kiosk Location

Location: Structure of { (name of the location of the kiosk)

 Airport code: name (airport/location code, 3 characters)

 Terminal: name (if applicable)

 Area: name (if applicable)

 Address: name (free form address, if applicable)

}

3.1.8 Kiosk GPS Coordinates

Coordinate: structure of { (coordinate of platform, international navy standard)

 Longitude: structure of {
 Orientation : set of {East, West, Undefined} (e.g. for Undefined is mobile
 kiosk)

 Degree: number {0-179}

 Minute: number {0-59}

 Second: number {0-59}

 Hundreds: number {0-99}

 }

 Latitude : structure of {
Orientation : set of {North, South, Undefined} (e.g. for Undefined is
mobile kiosk)

 Degree: number {0-89}

 Minute: number {0-59}

 Second: number {0-59}

 Hundreds: number {0-99}

 }

 Altitude : number (in meters from sea level)

}

3.1.9 Data

Data1: structure of {

 Data type: set of {AEA, CLOCK, SVG, SWITCH, MSG, NIL}

 Datastream: case data type of {

 AEA: character chain (message in AEA format)

1 Please see Section 1.7 for guidelines on handling sensitive data, including card track data

 Interface Definition

Revision 1.3, June 2013 80

 CLOCK : character chain (format is “yyyymmddhhmmss”)
 (used by Clock device)

 SVG: character chain (message in SVG format)

SWITCH : set of {OFF, ON, OPEN, CLOSED, YES, NO, UNKNOWN}
(used by sensor devices)

 MSG2: Structure of {

 Number of data records: number

 Record 3: Table [1. number of data records] of structure of {

 Data Status: set of {OK, Corrupted, Incomplete,
ZeroLength}

 Message: character chain

 }

)

 NIL : nil

 }

}

3.1.10 Kiosk Application ID

Kiosk-Application ID: structure of {

Application ID : structure of { (application to/for which the directive/event
applies, leave blank if not related to a specific application)

 AL code: name

(code associated to each airline for AL system manager, this value must be
the same as the one passed via the Environment level directive, 3
characters)

 Application name: name (unique name within AL code)

 }

 Kiosk ID : structure of {
(ID of the kiosk to which the directive/event applies, used for SM-Interface)

2 If the media being read has a logical multi-track arrangement, then each track is returned as a separate
msgData data “track”. Examples of this include 2 or 3-track magnetic cards, 2-track standard passport MRZ
data, 3-track National ID Card OCR data, etc. (Any valid multi-track document data can be received in this
fashion. CUSS is not limited to only certain types of documents.)
3 In case of a card reader, each record corresponds to card track. If the track is formatted but empty then the
record exists and the data status will be ZeroLength. If the track is not formatted then the corresponding
record will not exist in the structure. Also, the message in each record should not contain any vendor-
specific start and stop sentinel (e.g. “%”, “?”).

 Interface Definition

Revision 1.3, June 2013 81

 Vender code: name (vender code assigned at registration time, 3
characters)

 Kiosk name: name (unique name within vendor code)

 }

}

Note 1 (CUSS 1.0 Addendum A.1.30):
When used as an input parameter in a call to the platform (for example, for the level(0 call) the
application ID values companyCode and applicationName are used to uniquely identify the
CUSS application making the request. The vendorCode and kioskName parameters are ignored
(ie, an application cannot request a specific Kiosk ID.)

The platform will populate the output EnvironmentLevel akID and location fields with whatever
values the kiosk provider chooses provided they are otherwise CUSS-compliant.

An application vendor cannot assume that a specific kioskName is unique across its entire
network. Only the combination of vendor code, kiosk location, and kioskName can be
guaranteed unique.

An application vendor cannot require that a CUSS kiosk provide a specific kioskName. If an
application requires a specific syntax or value of kioskName/location values for its operation, the
application must include an internal mapping/lookup table or other feature that converts the
platform-provided akID/location values into the format that the application requires.

3.1.11 Event

Event: structure of {

Timestamp: number of 100 nanoseconds in UTC format based on 15 October
1582 00:00 (event originator timestamp)

 Kiosk-Application-ID : structure defined in 3.1.10

(ID of the kiosk application, if it is the event source or ID of the applicable kiosk
application in case of the event source is CAM)

 Kiosk Location: defined in Section 3.1.7 (kiosk Location (text format))

 Kiosk GPS Location: defined in Section 3.1.8 (kiosk GPS Coordinates)

 VCompReference: reference (virtual component reference if it is the event
 source)

 Function: name (name of the directive invoked)
Event code: number defined in Appendix A (application/component state
transition or the current application/component state if no transition applies)

 Interface Definition

Revision 1.3, June 2013 82

 Event mode: set of {SOLLICITED, UNSOLLICITED}

 Event type: set of {PRIVATE, PUBLIC, PLATFORM, INVALID}

 Event category: set of {ALERT, ALARM, NORMAL}

 Status code: number defined in Appendix A (component or function call status)

 Correlation: any (used for comparison only, set by application)

 Data: structure defined in Section 3.1.9 (data passed with the event, if any)

}

Note: The same event structure is used regardless of the event source or cause.
Therefore, some of the event fields may not always be applicable. In this case, the field
value(s) may be left blank or their values are considered not applicable. The following
are some examples on non-applicable values: kiosk-Application-ID if the event source is
a device virtual component, VCompReference if the event source is a kiosk application,
function name if the event is unsolicited, status code if the event source is a kiosk
application.

3.1.12 Event List Selection 4

Event List Selection: structure of {

 Call type: set of {CODE, TYPE, COMPONENT, ANY, ALL, CATEGORY}

 Call list : case call type of {

 ANY : Nil (wait for any code of any component, used for waitEvent
only)

 ALL : Nil (apply to all codes for all component(s))

 CODE: Event code selection: structure defined in Section 3.1.13

 TYPE: Event type selection: structure defined in Section 3.1.14

 COMPONENT : Component selection: structure defined Section 3.1.15

 CATEGORY : Event category selection: structure defined in Section
3.1.16

 }
 }

3.1.13 Event Code Selection

Event code selection: Structure of {

 Number of event codes: number
 List1: table [1..number of event codes] of structure of {

 Event code: number defined in Section0

4 In CUSS 1.0, it is not required to implement event filtering. All Device Component events will be sent to
listeners registered using the acquire directive. The event listener passed through registerEvent
will be used for all events coming from CUSS Application Manager.

 Interface Definition

Revision 1.3, June 2013 83

 List type: set of {ALL, ANY, COMPONENT}

 List2: case list type of {

 ALL: nil (apply for this code to all components)

 ANY: nil (apply for this code to any component, only used for
waitEvent directive)

COMPONENT: Structure of {

(this list type can not be used with acquire directive)

 Number of components: number

 List3: table [1..number of components] of {

 VCompReference: reference (virtual component
IOR)

 }

 }

 }

 }

}

3.1.14 Event Type Selection

Event type selection: Structure of {

 Number of event types: number

 List1: table [1..number of event types] of structure of {

 Event type: set of {PRIVATE, PUBLIC, PLATFORM}

 List type: set of {ALL, ANY, COMPONENT}

 List2: case list type of {
 ALL: nil (apply for this code to all components)

 ANY: nil (apply for this code to any component, only used for
waitEvent directive)

COMPONENT: Structure of {
(this list type can not be used with acquire directive)

 Number of components: number
 List3: table [1..number of components] of {

 VCompReference: reference (virtual component
IOR)

 }

 }

 }

 Interface Definition

Revision 1.3, June 2013 84

 }

}

3.1.15 Component Selection

Component selection: Structure of {

 Number of components: number

 List1: Table [1..number of components] of structure of {

 Reference value: reference (virtual component reference)

 List type: set of (ALL, ANY, CODE, TYPE, CATEGORY)

 List2: case list type of {

 ALL: nil (apply for all codes of this component)

ANY: nil (apply for any code of this component, used only for
waitEvent directive)

 CODE: structure of {

(Event code, for all status codes associated to the event listed)

 Number of codes: number)

 List3: table [1..number of codes] of {

CODE: number defined in Appendix A

 TYPE: set of {PRIVATE, PUBLIC, PLATFORM}

 CATEGORY: set of {NORMAL, ALERT,
ALARM}

 }

 }

 }

 }

}

3.1.16 Event category Selection

Event category selection: Structure of {

 Number of event categories: number

 List1: table [1..number of event categories] of structure of {

 Event category: set of {NORMAL, ALERT, ALARM}

 List type: set of {ALL, ANY, COMPONENT}

 List2: case list type of {
 ALL: nil (apply for this code to all components)

 Interface Definition

Revision 1.3, June 2013 85

 ANY: nil (apply for this code to any component, only used for
waitEvent directive)

COMPONENT: Structure of {
(this list type can not be used with acquire directive)

 Number of components: number
 List3: table [1..number of components] of {

 VCompReference: reference (virtual component
IOR)

 }

 }

 }

 }

}

3.2 Components Definition
A virtual component is defined with a set of classes, which have been divided into hierarchic
classes. This section defines these classes and how each virtual component is mapped to these
classes.

3.2.1 Component Classes

Component class Description

Component All parts that compose a CUSS kiosk platform. All components are derived
from this class.

Component

ManagementInterface Component under control of CUSS Application Manager or System Manager
Interface. Refer to Section 3.3.

CUSSCntl Component under control of CUSS Device Components. Refer to Section
3.6.

CUSSCntl

NativeDevice Device used by the CUSS environment. They can be accessed, without the
use of CUSS interface, only if mentioned in this chapter (like: disk, screen,
network....). All of these native device must generate events to inform
application and system managers about their status and availability

ApplicationComponent Component used to query the state and/or characteristics of a kiosk
application that is configured on the platform. (not to be confused with the
actual application)

Peripheral Input/output devices that are able to generate events to be sent to
applications.

ManagementInterface

ApplicationManager Component that controls all kiosk applications on the platform. Refer to
Section 3.4.

 Interface Definition

Revision 1.3, June 2013 86

Component class Description

SystemManagerInterface Component that implements the SP/AL System Manager Interface. Refer to
Section 3.5.

Peripheral

Input Components that provide data to applications

Output Components that are able to receive data from applications

User Components that interact directly with customers/users. See Note below

Userless Components that don’t interact with customers/users

Media Components that use a physical media (e.g. card, coupon, or a paper
document)

Medialess Components that don’t use a physical media (e.g. card, coupon, or a paper
document)

Data Components that transfer data

Dataless Components that don’t transfer data

Another way of reading the same table is:

Component
ManagementInterface

ApplicationManager
SystemManagerInterface

CUSSCntl
NativeDevice
ApplicationComponent
Peripheral

Input
Output
User
Userless
Media
Medialess
Data
Dataless

Note: A component will be considered pertaining to the User class (UserInput or
UserOutput virtual component type) if the answer to one of the following questions is
yes:

Does the user have to interfere with the device in any way to make the data available?

Could it be useful for an application to put the device in disable status for any reason?

3.2.2 Virtual Component Definitions

A virtual component inherits attributes, directives and events from all classes that composed this
component. For example, a UserInput virtual component is made of classes: User, Medialess,
Data and Input; therefore, this virtual component is able to handle everything defined to these
classes or their super-classes. In addition, a virtual component is composed of the real

 Interface Definition

Revision 1.3, June 2013 87

component and its CUSS interface. For example, a MediaInput is composed of a real card reader
(hardware), the card reader supplier driver (software) and the associate CUSS interface.
The table below shows the component classes each virtual CUSSCtnl component is composed
of:

Virtual Components versus Component Classes

Virtual Component Name Component Classes

Application ApplicationComponent

Capture
(components that are able retain media)

Userless + Media + Dataless

DataInput
(components used for inbound data transfer (e.g.
digital input))

Userless + Medialess + Data + Input

DataOutput
(components used for outbound user data
transfer (e.g. screen))

Userless + Medialess + Data + Output

Dispenser
(components that receive media from a
Peripheral component and offer it to the user or
to another Peripheral component e.g. ejecting an
ATB coupon from the printer to the escrow)

User + Media + Dataless

Display
(e.g. kiosk computer screen)

NativeDevice

Feeder
(components that are holding media (e.g. ATB
stock) and supply it to another Peripheral
component)

Userless + Media + Dataless

LoggingServices Not defined in CUSS 1.0

MediaInput
(components used for reading from media (e.g.
mag card reader)

User + Media + Data + Input

MediaOutput
(components used for writing to media (e.g.
receipt printer))

User + Media + Data + Output

Network
(components handling network access)

NativeDevice

Storage
(components used for reading/writing from/to
storage (e.g. hard disk))

NativeDevice

UserInput
(components used for inbound user data transfer
(e.g. sound device))

User + Medialess + Data + Input

UserOutput

(components used for outbound user data
transfer (e.g. screen))

User + Medialess + Data + Output

 Interface Definition

Revision 1.3, June 2013 88

3.2.3 Components that depend on a linked Component

For some devices, an action on one component may not be completed due only to an error in a
linked component. For example, a MediaOutput component might not be able to print if a linked
Dispenser component that is full of documents, even though the MediaOutput component has no
errors.

If a component directive is called that depends on a linked component that is in a state that does
not allow the directive to complete, that directive will fail with HARDWARE_ERROR or other
failure status code (depending on the condition of the linked component) but the component on
which the directive was called will remain AVAILABLE.

For example, if printing on a MediaOutput component when the linked Dispenser component is
at MEDIA_FULL and cannot accept more coupons, the send() request would fail with
MEDIA_FULL but the MediaOutput component would remain available.

 Interface Definition

Revision 1.3, June 2013 89

3.3 Management Interface (MIF) Directives
MIF directives are shared by both the Application Manager Interface and the System Manager
Interface. They are divided into two categories: Environment directives, which allow kiosk
applications and the SP/AL System Managers to get a high level knowledge of the platform
environment and the Event directives, which are related to event handling. Both Environment
directives and Event directives are implemented using synchronous mode only.
Environment directives are the first two: level and components.
Event directives are: generateEvent, queryEvent, registerEvent, and waitEvent.

3.3.1 level

Description This is the first directive that should be issued by a kiosk application or a system manager

to get basic information on the specific CUSS Platform implementation. The calling
application can validate the environment to check knowing if it can execute properly into
this specific environment implementation. If the application is known by the platform (via
platform configuration), the application reference (token) is returned with this call.

Apply to ApplicationManager class

Available to AL application in INITIALIZE state
Service Provider System Manager
Application Provider System Manager

Access Shared, local/remote, synchronous

Structure
sent

Application ID 5: part of Kiosk Application ID, structure defined in Section 3.1.10

Code returned Function Return Code: defined in Appendix A

5 Only the Application ID part of the Kiosk Application ID must be filled by the application with the same
information provided to CUSS Application Manager by configuration. The Kiosk ID part could be left
blank.

 Interface Definition

Revision 1.3, June 2013 90

Structure
returned

Structure of {
SessionTimeout : number in milliseconds (timeout value for an application session.

Session is the period when an application is active.
SESSION_TIMEOUT event will be sent when this timeout
elapses)

KillTimeout 6: number in millseconds (Time left before application is killed
(moved to DISABLED state). KillTimeout starts when
SessionTimeout expires. KILL_TIMEOUT event will be sent
after KillTimeout elapses.)

Kiosk Location : structure defined in Section 3.1.7
GPSLocation: Kiosk GPS Coordinates , structure defined in Section 3.1.8
Kiosk ID 7: part of Kiosk Application ID structure, defined in Section 3.1.10
CUSS version : name contains a comma-separated string for all CUSS
 versions supported
CUSS interface version supported Minimum level : name
CUSS interface version supported Maximum level : name
JVM name : name Name of the JAVA virtual machine used
JVM version : name Version of the JAVA virtual machine used
Browser name : name Name of the installed internet browser
Browser version : name Version of the installed internet browser
OS name : name Name of the installed operating system
OS version : name Version of the installed operating system

Application token : defined in Section 3.1.4

}

3.3.1.1 Platform Version Information

For CUSS 1.2, the platform will include “1.0,1.1,1.2” in the cussVersion environment
component. Platforms that support earlier versions will not include “1.2” in this string. The
cussInterfaceVersionMin field will contain “1.0” or be blank.

For logging and troubleshooting purposes, the platform will set the cussInterfaceVersionMax
field of the EnvironmentLevel structure to be a platform-specific, free-form string. This string
will accurately reflect the internal (proprietary) version of the CUSS platform on which the
application is running.

This string should not be used to make the behaviour of the CUSS application different for
various platform vendors. Instead, for example, it could be used by an application to determine if
the platform version is older or newer than the version against which the vendor performed
integration testing.

6 The minimum value for KillTimeout is 60000 (1 minute) to allow applications sufficient time to exit
7 Only the kiosk ID part of the Kiosk Application ID structure need to be filled by the application manager.

 Interface Definition

Revision 1.3, June 2013 91

3.3.1.2 Platform Location Information

Some CUSS kiosks might be located at areas other than airports such as convention centres. In
some cases, this could allow kiosks serving multiple departure airports (for example, London or
New York.)

A kiosk that is not deployed at an airport will contain the word "OFFSITE" within the address
field of the EnvironmentLevel location. A CUSS application can use this indication along with
the airportCode airport code (or possibly city code) to determine if a particular kiosk is offsite,
and adjust its business logic if needed.

A kiosk service provider that is deploying kiosks offsite must communicate this information to
airlines whose applications are running on those offsite kiosks. This is to allow airlines to opt off
of these kiosks (for legal, regulatory, or other reasons.) if needed, airline providers can adapt
their applications to support the offsite and airport code indicators to adjust the business logic of
their CUSS applications.

3.3.2 components

Description This is the second directive to be issued by an application allowing it to get a list of all
implemented virtual components, their characteristics and their CORBA object references.
This will allow the application to check whether all components that it requires are
implemented or not.

Apply to ApplicationManager class
Available to AL application in INITIALIZE or ACTIVE state

Service Provider System Manager
Application Provider System Manager

Access Shared, local/remote, synchronous
Structure sent Application Token: defined in Section 3.1.4
Code returned Function Return Code: defined in Appendix A
Structure
returned

Table [0..number of virtual components -1] of structure of {
Virtual component name : name (defined in Section 3.2.2
Virtual component object reference : reference; (component IOR)
Real component name : name (this is unique for a specific peripheral that is

 mapped to many virtual components,
 must be used for comparison only)

LinkedComponents : structure of (
Link table : Table [0..number of links-1] of {

Virtual Component Table Index: number {from 0 to number of virtual
component-1} (bi-directional direct component link only)

}
}

Note:
Component Characteristics could be accessed via the virtual component object reference.

All the callers will get a complete list of all NativeDevice and Peripheral components plus:

 Interface Definition

Revision 1.3, June 2013 92

list of all ApplicationComponent components related to all configured AL
applications on the platform if the caller is the SP System Manager

list of all ApplicationComponent components for a specific AL if the caller is the
associated AL System Manager.

its own ApplicationComponent component if the caller is an AL application

 Interface Definition

Revision 1.3, June 2013 93

3.3.3 generateEvent

Description Generate an event to a System Manager. Application should not use generateEvent
to communicate with Application Manager. It should notify instead.

Apply to ManagementInterface Class
Available to AL application in INITIALIZE, UNAVAILABLE, AVAILABLE, or ACTIVE state

Service Provider System Manager
Application Provider System Manager

Access Shared, local/remote, synchronous
Structure sent Application token: defined in Section 3.1.4

Event : to be generated: structure defined in Section 3.1.11
Code returned Function Return Code: defined in Section A.1
Structure
returned

Event : structure defined in Section 3.1.11

3.3.4 queryEvent 8

Description Return the description of the event(s).
Apply to ApplicationManager Class

All acquired virtual components of class “CUSSCntl”
Available to AL application

Service Provider System Manager
Application Provider System Manager

Access Shared, local/remote, synchronous
Structure sent Structure of {

Application Token: defined in Section 3.1.4
Event list selection: structure defined in Section 3.1.12

}
Code returned Function Return Code: defined in A.1
Structure returned Structure of {

 List type: set of {CODE, COMPONENT, TYPE} (list type returned
 will be the same as the one in the request)
 List1 : Case list type of {
 CODE, TYPE: structure of {
 Number of codes : number
 List : Table of [1..number of codes] of structure of {
 Event code : number
 Event type : set of {PRIVATE, PUBLIC, PLATFORM}
 Event description : chain of characters
 Number of components : number (components to which the
 code applies)
 List2 : Table [1..number of components] of name
 (virtual component name)
 }
 }
 COMPONENT: structure of {
 Number of components : number
 List : structure of {
 Component name : name (virtual component name)
 Number of codes : number

8 In CUSS 1.0, the implementation of queryEvent directive is optional. If not implemented, it should
always return RC_NOT_SUPPORTED as the function return code.

 Interface Definition

Revision 1.3, June 2013 94

 List2 : Table of [1..number of codes] of structure of (
 Event code : number
 Event type : set of {PRIVATE, PUBLIC, PLATFORM}
 Event description : chain of characters
 }
 }
 }
 }
}

3.3.5 registerEvent

Description Subscribe to or discards from receiving any related event notification. The use of this
directive has an additive effect, i.e. a call will not supersede previous ones but, instead,
subscribe for previous event list plus the one in the current call. All subscription done
with this directive will be received, within the application, via a single listener.

Apply to ApplicationManager Class
All acquired virtual components of class “CUSSCntl"

Available to AL application in INITIALIZE or ACTIVE state
Service Provider System Manager
Application Provider System Manager

Access Shared, local/remote, synchronous
Structure sent Structure of {

Application Token: defined in Section 3.1.4
Action : set of {SUBSCRIBE, DISCARD} (subscribe to receive the event,
 discard to not receive the event)
Event list selection: structure defined in 3.1.12 (specifies the events to register)
Listener : reference (object reference of the listener)
Correlation: defined in Section 3.1.5 (user data that is submitted with each event
 send to the listener)

}
Code returned Function Return Code: defined in Appendix A
Structure
returned

Event : structure defined in Section 3.1.11

3.3.6 waitEvent

Description Application is waiting for an event to occur. To wait for an event, the application must
have subscribed to it via the acquire (Section 3.6.1) or registerEvent (Section 3.3.5)
directives. The directive will be completed at event occurrence (any or all in the list) or
as timeout expired.

Apply to ApplicationManager Class
All acquired virtual components of class “CUSSCntl”

Available to AL application
Access Shared, local/remote, synchronous
Structure sent

Structure of {
 Timeout 9: defined in Section 3.1.3
 Application Token : defined in Section 3.1.4
 Event list selection: structure defined in Section 3.1.12
}

Code returned Function Return Code: defined in Appendix A

9 Positive and negative timeout values have the same effect for waitEvent directive

 Interface Definition

Revision 1.3, June 2013 95

Structure returned Event : structure defined in Section 3.1.11

 Interface Definition

Revision 1.3, June 2013 96

3.4 Application Manager Interface (AMI) Directives 10
The Application Manager interface is accessed by the AL application using CORBALOC as
follows: corbaloc:<kiosk-IP address>:20000/ApplicationManager or
corbaloc:<kiosk-host name>:20000/ApplicationManager, provided that the
kiosk host name could be resolved to a valid IP address.
The AMI directives constitute of all the Management Interface directives, defined in Section 3.3,
and the following two directives: initRequest and notify.

3.4.1 initRequest

Description The application now wants to initialize/re-initialize.

This is a blocking call. After this directive returns the application is allowed to initialize.
This handling ensures that initialization is serialized for all applications. This is
necessary because applications may load e.g. PECTAB to an ATB printer, which can
be done by only one application at a time.

Apply to ApplicationManager Class
Available to Airline application in STOPPED state after being loaded by application manager
Access Shared, local/remote, synchronous
Structure sent Application Token: defined in Section 3.1.4
Code returned Function Return Code: defined in Appendix A
Structure returned Event : structure defined in Section 3.1.11

3.4.2 notify

Description This directive is used by the application to request a state change from CUSS

Application Manager, which will change the application state if request is approved.
Apply to ApplicationManager Class
Available to AL Application in a neighborhood state
Access Shared, local/remote, synchronous
Structure sent Structure of {

Application Token: defined in Section 3.1.4, token of the requesting application
Kiosk-Application ID 11: defined in Section 3.1.10, Kiosk Application whose state
to be changed.
State Transition: number (event code {101 to 130} defined in Appendix A)

}
Code returned Function Return Code: defined in Appendix A
Structure returned Event : structure defined in Section 3.1.11

10 AMI directives could be made available to CLA if the platform provider chooses to base the
communication between CLA and CAM based on the AMI interface. As CLA is an integral part of the
CUSS platform, this is an internal decision to be made by platform provider.
11 This maybe useful for CLA to inform CAM which kiosk application is activated. This depends whether
CLA use this interface to communicate to CAM. This is a design decision left to the platform provider.

 Interface Definition

Revision 1.3, June 2013 97

3.5 System Manager Interface (SMI) Directives
The system manager interface is accessed by SP/AL system managers using CORBALOC as
follows: corbaloc:<kiosk-IP address>: 20001/ServiceProviderInterface
or
corbaloc:<kiosk-host name>:20001/ServiceProviderInterface, provided
that the kiosk host name could be resolved to a valid IP address.
SMI directives are comprised of all the Management Interface directives defined earlier in
Section 3.3, as well as the following directives described below: load, resume,
resumeAll, stop, stopAll, suspend, and suspendAll. These directives will
result in one or more events generated to the applicable application(s) to inform them of their
state change. Refer to Section 3.7.3 for more information about these events.
Note: The AL system Manager can affect only application(s) of the same AL.

3.5.1 load

Description Ask CUSS application Manager to load an application (realize Load state transition).
Apply to AL Application in DISABLED state (only available for SP System Manager upon human

intervention) or in STOPPED state
Available to Service Provider System Manager

Application Provider System Manager
Access Shared, local/remote, synchronous/asynchronous
Structure sent Timeout: Timeout value for the call; defined in Section 3.1.3

Application Token: defined in Section 3.1.4, token of the requesting SM application
Kiosk-Application ID: defined in Section 3.1.10, ID of Kiosk Application to be loaded.

Code returned Function Return Code: defined in Appendix A
Structure returned Event : structure defined in Section 3.1.11

Note: If there is another ACTIVE application running, load should queue the request
until the application completes its session. In case of synchronous call, load will block
until its timeout elapses or it is allowed to start executing.

A system manager is not allowed to load an application that was stopped by the other system
manager.

3.5.2 resume

Description Resume a suspended application to its previous state (AVAILABLE, UNAVAILABLE or

SUSPENDED).
Apply to AL application that was put in SUSPENDED state by the same system manager
Available to Service Provider System Manager

Application Provider System Manager
Access Shared, local/remote, synchronous
Structure sent Application Token: defined in Section 3.1.4, token of the requesting SM application

Kiosk-Application ID: defined in Section 3.1.10, ID of Kiosk Application to be
resumed.

Code returned Function Return Code: defined in Appendix A
Structure returned Event : structure defined in Section 3.1.11

 Interface Definition

Revision 1.3, June 2013 98

Note: If an application is suspended by its own AL System Manager and the SP System
Manager, it is required that both system managers resume the application to get back to
its pre-suspended state.

3.5.3 resumeAll

Description Resume all suspended applications to their previous states (AVAILABLE,

UNAVAILABLE, or SUSPENDED).
Apply to AL applications that were put in SUSPENDED state by the same system manager
Available to Service Provider System Manager

Application Provider System Manager
Access Shared, local/remote, synchronous
Structure sent Application Token: defined in Section 3.1.4, token of the requesting SM application
Code returned Function Return Code: defined in Appendix
Structure returned Event : structure defined in Section 3.1.11

3.5.4 stop

Description Stop (i.e. unload) an application (realize Stop state transition)
Apply to AL application in INITIALIZE, UNAVAILABLE, AVAILABLE or ACTIVE state or that was

put into SUSPENDED state by the same system manager
Available to Service Provider System Manager

Application Provider System Manager
Access Shared, local/remote, synchronous
Structure sent Application Token: defined in Section 3.1.4, token of the requesting SM application.

Kiosk-Application ID: defined in Section 3.1.10, ID of Kiosk Application to be stopped.
Code returned Function Return Code: defined in Appendix A
Structure returned Event : structure defined in Section 3.1.11

3.5.5 stopAll

Description Stop all applications (realize Stop state transition).
Apply to AL applications in INITIALIZE, UNAVAILABLE, AVAILABLE or ACTIVE state

AL applications that was put in SUSPENDED state by the same system manager.
Available to Service Provider System Manager

Application Provider System Manager
Access Shared, local/remote, synchronous
Structure sent Application Token: defined in Section 3.1.4, token of the requesting SM application
Code returned Function Return Code: defined in Appendix A
Structure returned Event : structure defined in Section 3.1.11

3.5.6 suspend

Description Suspend an application.
Apply to AL applications in AVAILABLE, UNAVAILABLE or SUSPENDED state
Available to Service Provider System Manager

Application Provider System Manager

 Interface Definition

Revision 1.3, June 2013 99

(only the same SM can issue a resume later)
Access Shared, local/remote, synchronous
Structure sent Application Token: defined in Section 3.1.4, token of the requesting SM application

Kiosk-Application ID: defined in Section 3.1.10, ID of Kiosk Application to be
suspended.

Code returned Function Return Code: defined in Appendix A
Structure returned Event : structure defined in Section 3.1.11

3.5.7 suspendAll

Description Suspend all applications.
Apply to AL applications in AVAILABLE, UNAVAILABLE or SUSPENDED state
Available to Service Provider System Manager

Application Provider System Manager
(only the same SM can issue a resume or resumeAll later)

Access Shared, local/remote, synchronous
Structure sent Application Token: defined in Section 3.1.4, token of the requesting SM application
Code returned Function Return Code: defined in Appendix A
Structure returned Event : structure defined in Section 3.1.11

Note: If one of the applicable applications is in ACTIVE state, like suspend, suspendAll
will fail and return RC_STATE as function return code.

 Interface Definition

Revision 1.3, June 2013 100

3.6 Device Component Interface (DCI) Directives
DCI directives manage virtual components controlled by CUSS. They are divided into four
categories: component directives, data directives, document directives and event directives.
Component directives are: acquire, disable, enable, query, release, setup and test.
Data directives are: receive and send.
Document directives are: offer and retain.
Event directive is: cancel.

Please read Section 3.8 below for some examples of how certain events and status codes
correspond to real device behaviour for MediaInput devices.

3.6.1 acquire

Description Make the virtual component available for an application. The application could at the
same time subscribe to a component specific listener associate to the component
acquired.

Apply to All released virtual components of class “Peripheral” or “NativeDevice”. The initial state
of these virtual components is RELEASED.

Available to AL application in INITIALIZE, UNAVAILABLE, AVAILABLE or ACTIVE state
Service Provider System Manager

Application Provider System Manager
Access Shared, local/remote, synchronous/asynchronous
Structure sent Structure of {

 Timeout: Timeout value for the call; defined in Section 3.1.3
 Application Token: defined in Section 3.1.4
 Event list selection: structure defined in 3.1.12 (specifies the component
 events to register i.e. event filtering)
 Listener : reference (object reference of the listener)
 Correlation: defined in Section 3.1.5 (user data that is submitted with each
 event send to the listener)
}

Code returned Function Return Code: defined in Appendix A
Structure returned Event : structure defined in Section 3.1.11

The status code in the retuned event represents the device status and depends on the virtual
component this directive is applied to as shown in the following table:

Function: acquire Virtu al Component Types

Status Code

C
ap

tu
re

D
ataInput

D
ataO

utput

U
se

rInput

U
se

rO
utput

D
isp

enser

F
eede

r

M
ed

ia
Inpu

t

M
ed

ia
O

utpu
t

D
isp

la
y

N
etw

o
rk

S
torage

OK X X X X X X X X X X X X

TIMEOUT X X X X X X X X X X X X

 Interface Definition

Revision 1.3, June 2013 101

Function: acquire Virtu al Component Types

Status Code

C
ap

tu
re

D
ataInput

D
ataO

utput

U
se

rInput

U
se

rO
utput

D
isp

enser

F
eede

r

M
ed

ia
Inpu

t

M
ed

ia
O

utpu
t

D
isp

la
y

N
etw

o
rk

S
torage

WRONG_STATE12 X X X X X X X X X X X X

CANCELLED X X X X X X X X X X X X

SOFTWARE_ERROR X X X X X X X X X X X X

MEDIA_JAMMED X X X X X

MEDIA_MISPLACED X X X X

MEDIA_PRESENT X X X

MEDIA_ABSENT X X X X

MEDIA_HIGH X X X

MEDIA_FULL X X X

MEDIA_LOW X

MEDIA_EMPTY X

MEDIA_DAMAGED X

MEDIA_INCOMPLETELY_INSERTED X

CONSUMABLES X

HARDWARE_ERROR X X X X X X X X X X X X

CRITICAL_SOFTWARE_ERROR X X X X X X X X X X X X

NOT_REACHABLE X X X X X X X X X X X X

NOT_RESPONDING X X X X X X X X X X X X

THRESHOLD_ERROR X X X X X X X X X X X X

THRESHOLD_USAGE X X X X X X X X X X X X

CONFIGURATION_ERROR X X X X X X X X X

3.6.2 disable

Description Make the virtual component unavailable for the user (e.g. disable a reader device from
a document insertion).

Apply to All acquired and enabled virtual components of class “User” excluding “NativeDevice”
components .

Available to AL Application in ACTIVE state
Service Provider System Manager

Access Exclusive, local/remote, synchronous/asynchronous

Structure sent Timeout: Timeout value for the call; defined in Section 3.1.3
Application Token: defined in Section 3.1.4

Code returned Function Return Code: defined in Appendix A

Structure returned Event : structure defined in Section 3.1.11

12 WRONG_STATE is used in case of double acquire calls.

 Interface Definition

Revision 1.3, June 2013 102

Note 1 (taken from CUSS 1.0 Addendum A.1.12):
The platform will maintain in the enabled state any component upon which an application calls
enable(), until that application calls disable(), no matter how many documents are processed.

In some cases, a component is disabled practically by its physical limitations. For example, a
motorized card reader cannot read additional cards, even while logically enabled by the
application, until that card is offered and removed, or retained. If for this or any other reason the
physical component becomes disabled after reading a document (for example because of its
firmware logic) then the platform must automatically re-enable it (unless the application
explicitly disables the component directly immediately after a read.)

The status code in the retuned event represents the function call status and depends on the virtual
component this directive is applied to as shown in the following table:

Function: disable Virtua l Component Types

Status Code

U
se

rInput

U
se

rO
utput

D
isp

enser

M
ed

ia
Inpu

t

M
ed

ia
O

utpu
t

OK X X X X X

TIMEOUT X X X X X

WRONG_STATE X X X X X

CANCELLED X X X X X

SOFTWARE_ERROR X X X X X

OUT_OF_SEQUENCE13 X X X X X

DATA_PRESENT X X

CONSUMABLES X

HARDWARE_ERROR X X X X X

CRITICAL_SOFTWARE_ERROR X X X X X

NOT_REACHABLE X X X X X

NOT_RESPONDING X X X X X

THRESHOLD_ERROR X X X X X

THRESHOLD_USAGE X X X X X

CONFIGURATION_ERROR X X X X X

3.6.3 enable

Description Make the virtual component available for the user (e.g. enable a reader device for a
document insertion).

Apply to All acquired and disabled virtual components of class “User” excluding “NativeDevice”

13 OUT_OF_SEQUENCE is used in case of double disable calls.

 Interface Definition

Revision 1.3, June 2013 103

components. By default, all virtual components are disabled when they are acquired.

Available to AL Application in ACTIVE state
Service Provider System Manager

Access Exclusive, local/remote, synchronous/asynchronous

Structure sent Timeout: Timeout value for the call; defined in Section 3.1.3
Application Token: defined in Section 3.1.4

Code returned Function Return Code: defined in Appendix A

Structure returned Event : structure defined in Section 3.1.11

Note 1 (taken from CUSS 1.0 Addendum A.1.12):
The platform will maintain in the enabled state any component upon which an application calls
enable(), until that application calls disable(), no matter how many documents are processed.

In some cases, a component is disabled practically by its physical limitations. For example, a
motorized card reader cannot read additional cards, even while logically enabled by the
application, until that card is offered and removed, or retained. If for this or any other reason the
physical component becomes disabled after reading a document (for example because of its
firmware logic) then the platform must automatically re-enable it (unless the application
explicitly disables the component directly immediately after a read.)

The status code in the retuned event represents the device status and depends on the virtual
component this directive is applied to as shown in the following table:

 Function: Enable Virtual Component Types

Status Code

U
serInput

U
serO

utpu
t

D
isp

en
ser

M
ed

iaInpu
t

M
ed

iaO
utput

OK X X X X X

TIMEOUT X X X X X

WRONG_STATE X X X X X

CANCELLED X X X X X

SOFTWARE_ERROR X X X X X

OUT_OF_SEQUENCE14 X X X X X

MEDIA_JAMMED X X X

MEDIA_MISPLACED X X X

MEDIA_PRESENT X X X

MEDIA_ABSENT X X X

MEDIA_HIGH X

MEDIA_FULL X

MEDIA_INCOMPLETELY_INSERTED X

14 OUT_OF_SEQUENCE is used in case of double enable calls.

 Interface Definition

Revision 1.3, June 2013 104

DATA_PRESENT X X X

CONSUMABLES X

HARDWARE_ERROR X X X X X

CRITICAL_SOFTWARE_ERROR X X X X X

NOT_REACHABLE X X X X X

NOT_RESPONDING X X X X X

THRESHOLD_ERROR X X X X X

THRESHOLD_USAGE X X X X X

CONFIGURATION_ERROR X X X X

3.6.4 query

Description Return the state/status of the virtual component.

Apply to All acquired virtual components of class “Peripheral” and “ NativeDevice” and virtual
components of class “ApplicationComponent”

Available to AL Application in INITIALIZE, UNAVAILABLE, AVAILABLE or ACTIVE state
Service Provider System Manager

Application Provider System Manager

Access Shared, local/remote, synchronous/asynchronous

Structure sent Timeout: Timeout value for the call; defined in Section 3.1.3
Application Token: defined in Section 3.1.4

Code returned Function Return Code: defined in Appendix A

Structure returned Event : structure defined in Section 3.1.11
The event code in the returned event should contain the device component state or the
application state (if query is applied on an Application component).
The status code in the retuned event represents the device status (or the last known device status
if the device component is busy) and depends on the virtual component this directive is applied
to as shown in the following table:

Note 1:
A Dispenser component will return OK if it does not have any ability to detect if a document is
present (such as the case of a very simple paper path without any sensors.)

Function: query Virtual Component Types

Status Code

C
apture

D
ataInput

D
ataO

u
tput

U
serInput

U
serO

u
tput

D
ispense

r

F
eeder

M
ediaInp

ut

M
ediaO

utput

D
isplay

N
etw

ork

S
to

rage

OK X X X X X X X X X X X X

TIMEOUT X X X X X X X X X X X X

WRONG_STATE X X X X X X X X X X X X

CANCELLED X X X X X X X X X X X X

SOFTWARE_ERROR X X X X X X X X X X X X

 Interface Definition

Revision 1.3, June 2013 105

Function: query Virtual Component Types

Status Code

C
ap

tu
re

D
ataInput

D
ataO

utput

U
se

rInput

U
se

rO
utput

D
isp

enser

F
eede

r

M
ed

ia
Inpu

t

M
ed

ia
O

utpu
t

D
isp

la
y

N
etw

o
rk

S
torage

MEDIA_JAMMED X X X X X

MEDIA_MISPLACED X X X X

MEDIA_PRESENT X X X

MEDIA_ABSENT X X X X

MEDIA_HIGH X X X

MEDIA_FULL X X X

MEDIA_LOW X

MEDIA_EMPTY X

MEDIA_DAMAGED X

MEDIA_INCOMPLETELY_INSERTED X

DATA_PRESENT X X X

CONSUMABLES X

HARDWARE_ERROR X X X X X X X X X X X X

CRITICAL_SOFTWARE_ERROR X X X X X X X X X X X X

NOT_REACHABLE X X X X X X X X X X X X

NOT_RESPONDING X X X X X X X X X X X X

THRESHOLD_ERROR X X X X X X X X X X X X

THRESHOLD_USAGE X X X X X X X X X X X X

CONFIGURATION_ERROR X X X X X X X X X

 Interface Definition

Revision 1.3, June 2013 106

3.6.5 release

Description Make the virtual component unavailable for an application and unsubscribe the event
listener relative to the component. All pending asynchronous directives will be
automatically cancelled if not cancelled by the application itself.

Apply to All acquired virtual components of class “Peripheral” or “NativeDevice”.

Available to AL Application in INITIALIZE, UNAVAILABLE, AVAILABLE, or ACTIVE state
Service Provider System Manager

Application Provider System Manager

Access Shared, local/remote, synchronous

Structure sent Timeout: Timeout value for the call; defined in Section 3.1.3
Application Token: defined in Section 3.1.4

Code returned Function Return Code: defined in Appendix A

Structure returned Event : structure defined in Section 3.1.11

The status code in the retuned event represents the function call status and depends on the virtual
component this directive is applied to as shown in the following table:

Function: release Virtu al Component Types

Status Code

C
aptu

re

D
ataInput

D
ataO

u
tput

U
se

rInput

U
se

rO
u

tput

D
ispenser

F
eeder

M
ediaInput

M
ediaO

utput

D
isplay

N
etw

ork

S
to

rage

OK X X X X X X X X X X X X

TIMEOUT X X X X X X X X X X X X

WRONG_STATE15 X X X X X X X X X X X X

SOFTWARE_ERROR X X X X X X X X X X X X

3.6.6 setup

Description Set the virtual component and set up its profile for the application

Apply to All acquired virtual components of class “Peripheral” excluding “NativeDevice”
components.

Available to Service Provider System Manager (only if kiosk is not in use)
AL application in INITIALIZE or ACTIVE state

Access Exclusive, local/remote, synchronous/asynchronous

Structure sent Structure of {
 Timeout: Timeout value for the call; defined in Section 3.1.3
 Application Token: defined in Section 3.1.4
 Data : structure defined in Section 3.1.916

15 WRONG_STATE is used in case of double acquire calls.
16 Data is used to download new “resources” to the component (e.g. PECTAB & logo download). If
component does not support this data type, the call will be rejected and return RC_PARAMETER as function
return code.

 Interface Definition

Revision 1.3, June 2013 107

}

Code returned Function Return Code: defined in Appendix A

Structure returned Event : structure defined in Section 3.1.11

Note: When the application becomes ACTIVE, the platform ensures to select the proper context
of that application set by commands used in setup directive.

Only the following AEA commands are acceptable in case the data input parameter is
aeaDataType: CT, PT, PC, PS, LT, LC, LS, FT, FC, FS, FA, FR, TT, TC, TA, AV 17, ZS18,
PV, RI, RC, ES and EP. For LT, LC, LS, logos shall be in PCX format (See Appendix D.)

BT command with no parameters is allowed. Any parameter sent with BT (trying to setup the
bin) will be ignored. Any other commands must result in RC_UNAUTHORIZED. For more
information on using the AEA standard in CUSS, please see Appendix D.
Bag tag printers shall support the BTT request.

When the application becomes ACTIVE, the platform ensures to select the proper context of that
application set by commands used in setup directive.
The status code in the retuned event depends on the virtual component this directive is applied to
as shown in the following table:

Function: setup Virtual Component Types

Status Code

C
ap

tu
re

D
ataInput

D
ataO

utput

U
se

rInput

U
se

rO
utput

D
isp

enser

F
eede

r

M
ed

ia
Inpu

t

M
ed

ia
O

utpu
t

OK X X X X X X X X X

TIMEOUT X X X X X X X X X

WRONG_STATE X X X X X X X X X

CANCELLED X X X X X X X X X

SOFTWARE_ERROR X X X X X X X X X

OUT_OF_SEQUENCE X X X X

FORMAT_ERROR X X X X X X X X X

LENGTH_ERROR X X X X X X

DATA_MISSING X X X X X X

CONSUMABLES X

HARDWARE_ERROR X X X X X X X X X

CRITICAL_SOFTWARE_ERROR X X X X X X X X X

NOT_REACHABLE X X X X X X X X X

NOT_RESPONDING X X X X X X X X X

THRESHOLD_ERROR X X X X X X X X X

17 AV is used to query the revision of the AEA standard supported by the printer
18 ZS is used to determine of a bagtag printer can print in color.

 Interface Definition

Revision 1.3, June 2013 108

THRESHOLD_USAGE X X X X X X X X X

CONFIGURATION_ERROR X X X X X X

3.6.7 test

Description Test the virtual component and the real component as deep as possible. If the
component is a physical device then the device driver should be accessed but the
physical device should not be exercised.

Apply to All acquired virtual components of class “Peripheral” excluding “NativeDevice”
components.

Available to Service Provider System Manager (only if kiosk is not in use)

Access Exclusive, local/remote, synchronous/asynchronous.

Structure sent Timeout: Timeout value for the call; defined in Section 3.1.3 Application
Token: defined in Section 3.1.4

Code returned Function Return Code: defined in Appendix A

Structure returned Event : structure defined in Section 3.1.11
The status code in the retuned event represents the device status and depends on the virtual
component this directive is applied to as shown in the following table:

Function: test Virtual Component Types

Status Code

C
apture

D
ataInput

D
ataO

u
tput

U
serInput

U
serO

u
tput

D
ispense

r

F
eeder

M
ediaInp

ut

M
ediaO

utput

OK X X X X X X X X X

TIMEOUT X X X X X X X X X

WRONG_STATE X X X X X X X X X

CANCELLED X X X X X X X X X

SOFTWARE_ERROR X X X X X X X X X

OUT_OF_SEQUENCE X X X X X X

MEDIA_JAMMED X X X X X

MEDIA_MISPLACED X X X X

MEDIA_PRESENT X X X

MEDIA_ABSENT X X X X

MEDIA_HIGH X X

MEDIA_FULL X X

MEDIA_LOW X

MEDIA_EMPTY X

MEDIA_INCOMPLETELY_INSERTED X

DATA_PRESENT X X X

CONSUMABLES X

HARDWARE_ERROR X X X X X X X X X

CRITICAL_SOFTWARE_ERROR X X X X X X X X X

 Interface Definition

Revision 1.3, June 2013 109

NOT_REACHABLE X X X X X X X X X

NOT_RESPONDING X X X X X X X X X

THRESHOLD_ERROR X X X X X X X X X

THRESHOLD_USAGE X X X X X X X X X

CONFIGURATION_ERROR X X X X X X

3.6.8 Data Directives

The two data directives listed below, namely receive and send, are associated to data
handling. They are both are implemented with synchronous and asynchronous interface calls
available to the application.
All messages received by an application within an event resulting of a directive execution must
be of the same type (format) as the one used by the application when the directive was issued.

3.6.8.1 receive

Description Make the data from the virtual component available to the application. The
application has to call this directive to get unsolicited data from a virtual component.

Apply to All acquired virtual components of class “Input” excluding “NativeDevice”
components. If the component is also of class "User", it has to be enabled before.

Available to AL Application in ACTIVE state
Service Provider System Manager

Access Exclusive, local/remote, synchronous/asynchronous

Structure sent Timeout: Timeout value for the call; defined in Section 3.1.3
Application Token: defined in Section 3.1.4

Code returned Function Return Code: defined in Appendix A

Structure returned Event : structure defined in Section 3.1.11

Note:
It is the responsibility of the platform to ensure that the device component is ready to receive
data (e.g. Shutter is open in ATB) assuming the application has previously enabled the device
component.

Note 1:
Some data obtained from the platform via the receive() directive may be considered sensitive
data, such as payment card raw track information. Please review Section 1.7: Data Security
Considerations for important information on how applications should handle, process, and
forward sensitive information that is provided by the CUSS platform.

Note 2 (CUSS 1.0 Addendum A.1.18):
The platform will not include any device-specific separators (such as track separator or sentinel
characters), or filler/error characters, and will only return the standard data. If the physical reader
substitutes characters, for example for unreadable OCR character positions, the data record status
will indicate that it is a bad read but return as much information as possible.

If the media being read has a logical multi-track arrangement, then each track is returned as a
separate msgData data “track”. Examples of this include 2 or 3-track magnetic cards, 2-track

 Interface Definition

Revision 1.3, June 2013 110

standard passport MRZ data, 3-track National ID Card OCR data, etc. (Any valid multi-track
document data can be received in this fashion. CUSS is not limited to only certain types of
documents.)

Note 3 (CUSS 1.0 Addendum A.1.24):
Application developers should be aware that any MediaInput component (passport readers, card
readers, etc) might be linked to a Dispenser component. If this is the case, then the CUSS
application must call offer() on the linked Dispenser component in order to return the document
to the user. If the application does not handle this case, it is possible that document (card or
passport, etc) will be captured by the platform and not returned to the user.

Note 4 (based on CUSS 1.0 Addendum A.1.41):
An application can call receive() only once to get data from a Input component after that kiosk
device has obtained data from the user (card swipe, etc.) The platform must not “cache” Input
data (DataInput, MediaInput, UserInput, Conveyor) data after the initial receive() by the
application.

For example, in a motorized card reader, if the application obtains the card data via receive() and
does not call offer() to eject the card, subsequent calls to receive() will not return the data again
(DATA_MISSING.) Only if the card is ejected, and if the customer again inserts a card, will
receive() again provide data – from the new card.

For example, in a swipe reader, the application calls enable() and then receive() with a long
timeout. That receive() times out or returns a DATA_PRESENT event with the card data. If the
application calls receive() again, because the device is still enabled that call will block until a
new card is swiped.

For example, an application calls enable() and then waits for DATA_PRESENT on its event
listener, then calls receive() to obtain the data. Another call to receive() would not return the data
again (it would either give DATA_MISSING for a motorized reader if no offer() had been
called, or TIMEOUT if another card wasn’t swiped or inserted within the specified timeout.)

Note 5 (CUSS FOID Addendum):
If the application calls receive() on a card reader after the customer has read a payment card, the
platform will return truncated track data. Please review Chapter 8 for more information.

Note 6 (multiple simultaneous read tracks):

Some devices such as barcode scanners, may also return multiple “tracks” if the reader is
capable of detecting multiple barcodes on the same document or item – for example
multiple bag tags or barcodes on a bag. If an application wishes to support this type of
device, it may need additional logic to detect and consume any additional tracks of data
provided by the platform.

 Interface Definition

Revision 1.3, June 2013 111

The status code in the retuned event represents the function call status and depends on the virtual
component this directive is applied to as shown in the following table:

Function: receive Virtual Component Typ es

Status Code
D

a
taInpu

t

U
serInpu

t

M
ediaInp

ut

OK X X X

TIMEOUT X X X

WRONG_STATE X X X

CANCELLED X X X

SOFTWARE_ERROR X X X

OUT_OF_SEQUENCE X X X

FORMAT_ERROR X X X

LENGTH_ERROR X X X

DATA_MISSING X X X

HARDWARE_ERROR X X X

CRITICAL_SOFTWARE_ERROR X X X

NOT_REACHABLE X X X

NOT_RESPONDING X X X

THRESHOLD_ERROR X X X

THRESHOLD_USAGE X X X

CONFIGURATION_ERROR X X X

3.6.8.2 send

Description Send data from the application to the virtual component.

Apply to All acquired virtual component of class “Output” excluding “NativeDevice”
components. If the component is also of class "User", it has to be enabled before.

Available to AL Application in ACTIVE state

Service Provider System Manager

Access Exclusive, local/remote, synchronous/asynchronous

Structure sent Structure of {

 Timeout: Timeout value for the call; defined in Section 3.1.3
 Application Token: defined in Section 3.1.4
 Data: structure defined in Section 3.1.9
}

Code returned Function Return Code: defined in Appendix A

Structure returned Event : structure defined in Section 3.1.11

 Interface Definition

Revision 1.3, June 2013 112

Note: The data stream in the returned event (if any) should be the same type of the input
data parameter. For example, if an application has sent a AEA message, it should expect
an AEA message back in the data field of the returned event.

Only the following AEA commands are acceptable if the input data parameter is aeaDataType:
CP, CI, TK, TI, TR . Any other commands must result in RC_UNAUTHORIZED.

Bag tag printers shall also support the BTP request.

Other AEA commands (e.g. to operate insertion, eject, escrow, etc.) are implemented by specific
CUSS directives like setIOMode, offer, retain, etc.
VSR (Void Stacker Ribbon indicator) field is mandatory in the ATB responses.
The status code in the retuned event represents the function call status and depends on the virtual
component this directive is applied to as shown in the following table:

Note 1:
Please see Section 3.2.3 for the expected behavior when a component linked to the MediaOutput
component prevents the send() from completing.

Function: send Virtual Compon ent Types

Status Code

D
ataO

utpu
t

U
serO

utpu
t

M
ed

iaO
utpu

t

OK X X X

TIMEOUT X X X

WRONG_STATE X X X

CANCELLED X X X

SOFTWARE_ERROR X X X

OUT_OF_SEQUENCE X X

FORMAT_ERROR X X X

LENGTH_ERROR X X X

DATA_MISSING X X X

CONSUMABLES X

HARDWARE_ERROR X X X

CRITICAL_SOFTWARE_ERROR X X X

NOT_REACHABLE X X X

NOT_RESPONDING X X X

THRESHOLD_ERROR X X X

THRESHOLD_USAGE X X X

 Interface Definition

Revision 1.3, June 2013 113

Function: send Virtual Compon ent Types

Status Code

D
ataO

utput

U
se

rO
utput

M
ed

ia
O

utpu
t

CONFIGURATION_ERROR X X X

3.6.9 Document Directives

The two document directives listed below, namely offer and retain, allow document
manipulation. They are both implemented with synchronous and asynchronous interface calls
available to the application.

3.6.9.1 offer

Description Offer the document from the virtual component to the user or to an other

component

Apply to All acquired virtual component of class “ Feeder" or "Dispenser".

Available to AL application in ACTIVE state
Service Provider System Manager

Access Exclusive, local/remote, synchronous/asynchronous

Structure sent Timeout: Timeout value for the call; defined in Section 3.1.3
Application Token: defined in Section 3.1.4

Code returned Function Return Code: defined in Appendix A

Structure returned Event : structure defined in Section 3.1.11

Note: Directive offer is only required in case of manual feeder or real dispenser. Some
examples are: a MediaOutput (e.g. Card writer) that requires an explicit form feed or an
ESCROW device.

The status code in the retuned event represents the device status and depends on the virtual
component this directive is applied to as shown in the following table:

Function: Offer Virtual Compone nt Types

Status Code

D
isp

enser

F
eede

r

OK X X

TIMEOUT X X

WRONG_STATE19 X X

19 Calling offer when Feeder is empty (so in UNAVAILABLE state) results in status code
WRONG_STATE.

 Interface Definition

Revision 1.3, June 2013 114

CANCELLED X X

SOFTWARE_ERROR X X

OUT_OF_SEQUENCE X

MEDIA_JAMMED X X

MEDIA_MISPLACED X X

MEDIA_PRESENT X

MEDIA_ABSENT X

MEDIA_HIGH X

MEDIA_FULL X

MEDIA_LOW X

MEDIA_EMPTY20 X

HARDWARE_ERROR X X

CRITICAL_SOFTWARE_ERROR X X

NOT_REACHABLE X X

NOT_RESPONDING X X

THRESHOLD_ERROR X X

THRESHOLD_USAGE X X

20 If the feeder has one document left, calling offer will be successful with status code MEDIA_EMPTY (as
the new device status).

 Interface Definition

Revision 1.3, June 2013 115

Note 2 (CUSS 1.0 Addendum A.1.11):

If a Dispenser component is real then an offer() directive is required to make the document(s)
available to the user (such as ejecting a card from a motorized reader, or opening an escrow
door).

If a Dispenser component is virtual, documents are available to the user immediately even
without a call to offer().

If the Dispenser component (real or virtual) can detect when documents have been removed by
the user, the offer() directive is a blocking call that returns in normal conditions only after the
documents are taken (or the request times out.) A virtual dispenser can be blocking, such as is
the case for a paper output shoot with document sensor, which is immediately available to the
user but can detect when documents are present.

If a dispenser is not blocking, as defined above, then the offer() and query() directives shall
return status code OK of no other error condition is present.

If the dispenser is virtual and there is no sensor, then when the application calls offer()
asynchronously the CUSS platform must respond asynchronously with status code OK if no
other error conditions are present so the application can determine that no physical sensor is
present in the component.

 Interface Definition

Revision 1.3, June 2013 116

3.6.9.2 retain

Description Capture the document in the virtual component that is associated to secure bin.

Apply to All acquired motorized virtual components of class “Capture”.

Available to AL application in ACTIVE state
Service Provider System Manager

Access Exclusive, local/remote, synchronous/asynchronous

Structure sent Timeout: Timeout value for the call; defined in Section 3.1.3
Application Token: defined in Section 3.1.4

Code returned Function Return Code: defined in Appendix A

Structure returned Event : structure defined in Section 3.1.11

The status code in the retuned event represents the device status and depends on the virtual
component this directive is applied to as shown in the following table:

Function: retain Virtua l Component

Status Code

C
apture

OK X

TIMEOUT X

WRONG_STATE X

CANCELLED X

SOFTWARE_ERROR X

OUT_OF_SEQUENCE X

MEDIA_JAMMED X

MEDIA_ABSENT X

MEDIA_HIGH X

MEDIA_FULL X

HARDWARE_ERROR X

CRITICAL_SOFTWARE_ERROR X

NOT_REACHABLE X

NOT_RESPONDING X

THRESHOLD_ERROR X

THRESHOLD_USAGE X

 Interface Definition

Revision 1.3, June 2013 117

3.6.10 Event Directives

The following directive handles event-related functionality.

3.6.10.1 cancel

Description Cancel all pending (previously called in asynchronous mode) directives related to the
component at the time of this directive usage.

Apply to All acquired virtual components of class “Peripheral”.

Available to AL application in ACTIVE state
Service Provider System Manager

Access Exclusive, local/remote, synchronous

Structure sent Application Token: defined in Section 3.1.4

Code returned Function Return Code: defined in Appendix A

Structure returned Event : structure defined in Section 3.1.11

The status code in the retuned event represents the function call status and depends on the virtual
component this directive is applied to as shown in the following table:

Function: cancel Vir tual Component Types

Status Code

C
ap

tu
re

D
ataInput

 D
ataO

utput

U
se

rInput

U
se

rO
utput

D
isp

enser

F
eede

r

M
ed

ia
Inpu

t

M
ed

ia
O

utpu
t

OK X X X X X X X X X

TIMEOUT X X X X X X X X X

WRONG_STATE X X X X X X X X X

SOFTWARE_ERROR X X X X X X X X X

3.6.11 Media High/Full for Dispenser Components

This section is taken from CUSS 1.0 Addendum A.1.38. It clarified the behaviour of Dispenser
components which have a finite and practical limitation on the number of documents that can be
held before being retrieved by the kiosk user. In CUSS, this situation typically applies to Printer
devices.

When a print command is issued via the send() directive, the linked Dispenser component will
return a status code of MEDIA_PRESENT, MEDIA_HIGH, or MEDIA_FULL if it can detect
the presence of a document (via document sensor, etc) and OK if it does not have the ability to
detect documents.

 Interface Definition

Revision 1.3, June 2013 118

The platform must return MEDIA_FULL if it knows that no further documents can be printed
(due to a physical printer or stacker/escrow limitation, for example.) CUSS applications should
monitor the Dispenser status code for MEDIA_HIGH or MEDIA_FULL, and offer the
documents in the Dispenser to the user whenever this status is reached (as well as when it has
finished printing all its documents, if any remain.)

The status code MEDIA_FULL may either be a hard error of a soft error depending on the
virtual component. A dispenser component that is full will have a status code MEDIA_FULL as
a soft error. The component will remain available to offer the media to the user. The event will
be a private event.

If the application attempts to print more documents when a linked Dispenser is full, that request
will fail with a HARDWARE_ERROR (see Section 3.2.3 for more information.)

It is possible that a CUSS kiosk with a simple printer device is able to stack only one document.
In this case, the platform will return MEDIA_FULL after each print request and the application
must then wait for removal from the Dispenser prior to printing the next document.

The platform shall indicate via the Bin characteristics any practical capacity limitation of its
Dispenser component (see Section 5.1.1 for more information.) Applications can then use this
information to determine how many consecutive prints are possible.

 Interface Definition

Revision 1.3, June 2013 119

3.7 Event Listener Interface (ELI)
An AL application MUST register an event listener (using registerEvent directive) in order
that the application manager can communicate with the application via the callback directive of
the event listener. In addition, an AL application may choose to listen (by registering its listener
via the acquire directive) to events generated by device components. On the other hand, a
system manager (SP/AL) may choose to register its event listener(s) if it is interested to receive
events from the application manager and/or device components.
This section defines the event listener callback directive, and then lists the events generated by
either the CUSS Application Manger or the device components. These events are either sent to
all its listeners (AL application, SP/AL system manager, or a platform application) or returned to
their callers (AL application, SP/AL system manager, or a platform application) in case of
solicited events.

 Interface Definition

Revision 1.3, June 2013 120

3.7.1 callback Directive

Description Sends an event to a previously registered listener.

Apply to AL Application
Service Provider System Manager
Application Provider System Manager

Available to ApplicationManager Class
All virtual components of class "Peripheral"

Access local/remote, synchronous

Structure sent Event : structure defined in Section 3.1.11

Structure returned None

3.7.2 Device Components Events

The following is a list of all events generated by a device component and either sent to all its
applicable listeners or returned to its caller in case of solicited events. The list is sorted by the
event code, which represents either a state transition or the current state in case of no state
transition, and includes all possible associated status codes. Refer to Sections 0 and 0 for full
descriptions of the event codes and status codes.

Please read Section 3.8 below for some examples of how certain events and status codes
correspond to real device behaviour for MediaInput devices.

Event Codes
Event Code Description

001 State transition OK & soft error = EVENTHANDLING_READY

Used for soft conditions and OK only.

Associated Status Codes
000 OK
001 TIMEOUT
002 WRONG_STATE
003 CANCELLED
004 SOFTWARE_ERROR
006 OUT_OF_SEQUENCE
102 MEDIA_MISPLACED
103 MEDIA_PRESENT
104 MEDIA_ABSENT
105 MEDIA_HIGH
107 MEDIA_LOW
109 MEDIA_DAMAGED
110 MEDIA_INCOMPLETELY_INSERTED
201 FORMAT_ERROR
202 LENGTH_ERROR
203 DATA_MISSING
205 DATA_PRESENT

 Interface Definition

Revision 1.3, June 2013 121

Event Codes
Event Code Description

002 State transition Restart = UNAVAILABLE_RELEASED_PLA TFORM

An authorized platform component has released a component in
UNAVAILABLE state for any reason.

Associated Status Codes
801 CUSS_MANAGER_REQUEST

003 State transition Hard error = EVENTHANDLING_UNAVAIL ABLE

Caused by a hard condition that made the component unusable.

Associated Status Codes
101 MEDIA_JAMMED
102 MEDIA_MISPLACED
106 MEDIA_FULL
108 MEDIA_EMPTY
301 CONSUMABLES
302 HARDWARE_ERROR
303 CRITICAL_SOFWARE_ERROR
304 NOT_REACHABLE
305 NOT_RESPONDING
306 THRESHOLD_ERROR
307 THRESHOLD_USAGE
308 CONFIGURATION_ERROR

004 State transition Release = UNAVAILABLE_RELEASED

An application has released a component in UNAVAILABLE state.

Associated Status Codes
000 OK
004 SOFTWARE_ERROR

005 State transition Release = READY_RELEASED_APPLICATI ON

An application has released a component in READY state.

Associated Status Codes
000 OK
004 SOFTWARE_ERROR

006 State change Restart = READY_RELEASED_PLATFORM

An authorized platform component has released a component in READY
state for any reason.

Associated Status Codes
801 CUSS_MANAGER_REQUEST

007 State transition Acquire = RELEASED_READY

An application has acquired a component that is working normally.

Associated Status Codes
000 OK
004 SOFTWARE_ERROR

 Interface Definition

Revision 1.3, June 2013 122

Event Codes
Event Code Description

102 MEDIA_MISPLACED
103 MEDIA_PRESENT
104 MEDIA_ABSENT
105 MEDIA_HIGH
107 MEDIA_LOW
109 MEDIA_DAMAGED
110 MEDIA_INCOMPLETELY_INSERTED

008 State transition Acquire (hard error) = RELEASED_UN AVAILABLE

An application has acquired a component that is not working normally.

Associated Status Codes
101 MEDIA_ JAMMED
102 MEDIA_MISPLACED
103 MEDIA_PRESENT
106 MEDIA_FULL
107 MEDIA_ EMPTY
301 CONSUMABLES
302 HARDWARE_ERROR
303 CRITICAL_SOFTWARE_ERROR
304 NOT_REACHABLE
305 NOT_RESPONDING
306 THRESHOLD_ERROR
307 THRESHOLD_USAGE
308 CONFIGURATION_ERROR

Component States
201 State: RELEASED

No state transition. Component is in RELEASED state.

Associated Status Codes
000 OK
001 TIMEOUT
002 WRONG_STATE
003 CANCELLED
004 SOFTWARE_ERROR

202 State: UNAVAILABLE

No state transition. Component is in UNAVAILABLE state.

Associated Status Codes
001 TIMEOUT
002 WRONG_STATE
003 CANCELLED
004 SOFTWARE_ERROR
101 MEDIA_ JAMMED
102 MEDIA_MISPLACED
103 MEDIA_PRESENT
106 MEDIA_FULL
107 MEDIA_ EMPTY
301 CONSUMABLES

 Interface Definition

Revision 1.3, June 2013 123

Event Codes
Event Code Description

302 HARDWARE_ERROR
303 CRITICAL_SOFTWARE_ERROR
304 NOT_REACHABLE
305 NOT_RESPONDING
306 THRESHOLD_ERROR
307 THRESHOLD_USAGE
308 CONFIGURATION_ERROR

203 State: READY

No state transition. Component is in READY state.

Associated Status Codes
000 OK
001 TIMEOUT
002 WRONG_STATE
003 CANCELLED
004 SOFTWARE_ERROR
006 OUT_OF_SEQUENCE
102 MEDIA_MISPLACED
103 MEDIA_PRESENT
104 MEDIA_ABSENT
105 MEDIA_HIGH
107 MEDIA_LOW
109 MEDIA_DAMAGED
110 MEDIA_INCOMPLETELY_INSERTED
201 FORMAT_ERROR
202 LENGTH_ERROR
203 DATA_MISSING
205 DATA_PRESENT

210 State: BUSY

Component is in BUSY transient state.

Associated Status Codes
000 OK
102 MEDIA_MISPLACED
103 MEDIA_PRESENT
104 MEDIA_ABSENT
105 MEDIA_HIGH
107 MEDIA_LOW
109 MEDIA_DAMAGED
110 MEDIA_INCOMPLETELY_INSERTED
201 FORMAT_ERROR
202 LENGTH_ERROR
205 DATA_PRESENT

 Interface Definition

Revision 1.3, June 2013 124

3.7.3 CUSS Application Manager Events

The following is a list of all events21 generated by CUSS Application Manager and either sent to
all its applicable listeners or returned to its caller (AL application or SM) in case of solicited
events. The list is sorted by the event code, which represents either a state transition or the
current state in case of no state transition, and includes all possible associated status codes. Refer
to Sections 0 and 0 for full descriptions of the event codes and status codes.

Event Codes
Event Code Description

000 State transition suspendAll, resumeAll, stopAll = E C_OK

Used in the returned event for calls to suspendAll , resumeAll or stopAll
directives.

Associated Status Codes
000 OK
001 TIMEOUT
002 WRONG_STATE
004 SOFTWARE_ERROR
802 SP_SYSTEM_MANAGER_REQUEST
803 AL_SYSTEM_MANAGER_REQUEST

Application State Transitions
101 State transition Disable = INITIALIZE_DISABLED

Requested by CUSS Application Manager.

Associated Status Codes
303 CRITICAL_SOFTWARE_ERROR
305 NOT_RESPONDING
306 THRESHOLD_ERROR
801 CUSS_MANAGER_REQUEST

102 State transition Disable = AVAILABLE_DISABLED

Requested by CUSS Application Manager.

Associated Status Codes

303 CRITICAL_SOFTWARE_ERROR
305 NOT_RESPONDING
306 THRESHOLD_ERROR
801 CUSS_MANAGER_REQUEST

103 State transition Disable = ACTIVE_DISABLED

Requested by CUSS Application Manager.

Associated Status Codes

303 CRITICAL_SOFTWARE_ERROR
305 NOT_RESPONDING
306 THRESHOLD_ERROR

21 Event codes 117, 124, 125, 126, and 131 are no longer used in CUSS 1.0.

 Interface Definition

Revision 1.3, June 2013 125

Event Codes
Event Code Description

310 KILL_TIMEOUT
801 CUSS_MANAGER_REQUEST

104 State transition Wait = UNAVAILABLE_AVAILABLE

Requested by an AL Application.

Associated Status Codes

805 AL_APPLICATION_REQUEST
105 State transition Activate = AVAILABLE_ACTIVE

Requested by CUSS Application Manager upon information from Common
Launch Application.

Associated Status Codes
804 CL_ APPLICATION_REQUEST

106 State transition Wait = ACTIVE_AVAILABLE

Requested by AL Application.

Associated Status Codes
804 AL_APPLICATION_REQUEST

10722 State transition Stop = INITIALIZE_STOPPED_STOP

Requested by AL Application, CUSS Application Manager or System
Manager.

Associated Status Codes
000 OK
001 TIMEOUT
002 WRONG_STATE
004 SOFTWARE_ERROR
801 CUSS_MANAGER_REQUEST
802 SP_SYSTEM_MANAGER_REQUEST
803 AL_SYSTEM_MANAGER_REQUEST
804 AL_APPLICATION_REQUEST

10822 State transition Stop = AVAILABLE_STOPPED _STOP

Requested by AL Application, CUSS Application Manager or System
Manager.

Associated Status Codes
000 OK
001 TIMEOUT
002 WRONG_STATE
004 SOFTWARE_ERROR
801 CUSS_MANAGER_REQUEST
802 SP_SYSTEM_MANAGER_REQUEST
803 AL_SYSTEM_MANAGER_REQUEST
804 AL_APPLICATION_REQUEST

 Interface Definition

Revision 1.3, June 2013 126

Event Codes
Event Code Description

10922 State transition Stop = ACTIVE_STOPPED _STOP

Requested by AL Application, CUSS Application Manager or System
Manager.

Associated Status Codes
000 OK
001 TIMEOUT
002 WRONG_STATE
004 SOFTWARE_ERROR
801 CUSS_MANAGER_REQUEST
802 SP_SYSTEM_MANAGER_REQUEST
803 AL_SYSTEM_MANAGER_REQUEST
804 AL_APPLICATION_REQUEST

11022 State transition Stop = SUSPENDED_STOPPED_STOP

Requested by AL or SP System Manager (the one that can request this state
change is only the one that has put the application in SUSPENDED state).

Associated Status Codes
000 OK
001 TIMEOUT
002 WRONG_STATE
004 SOFTWARE_ERROR
802 SP_SYSTEM_MANAGER_REQUEST
803 AL_SYSTEM_MANAGER_REQUEST

11122 State transition Stop = DISABLED_STOPPED_STOP

Requested by CUSS Application Manager or SP System Manager.

Associated Status Codes
000 OK
001 TIMEOUT
002 WRONG_STATE
004 SOFTWARE_ERROR
801 CUSS_MANAGER_REQUEST
802 SP_SYSTEM_MANAGER_REQUEST

11222 State transition Resume = SUSPENDED_AVAILABLE

Requested by SP or AL System Manager.

Associated Status Codes
000 OK
001 TIMEOUT
002 WRONG_STATE
004 SOFTWARE_ERROR
802 SP_SYSTEM_MANAGER_REQUEST
803 AL_SYSTEM_MANAGER_REQUEST

 Interface Definition

Revision 1.3, June 2013 127

Event Codes
Event Code Description

11322 State transition Suspend = AVAILABLE_SUSPENDED

Requested by SP or AL System Manager.

Associated Status Codes
000 OK
001 TIMEOUT
002 WRONG_STATE
004 SOFTWARE_ERROR
802 SP_SYSTEM_MANAGER_REQUEST
803 AL_SYSTEM_MANAGER_REQUEST

114 State transition Restart = INITIALIZE_STOPPED_RESTA RT

Requested by CUSS Application Manager or SP System Manager or AL
application.

Associated Status Codes
801 CUSS_MANAGER_REQUEST
802 SP_SYSTEM_MANAGER_REQUEST

115 State transition Restart = AVAILABLE_STOPPED_RESTAR T

Requested by SP System Manager or CUSS Application Manager or AL
application.

Associated Status Codes
801 CUSS_MANAGER_REQUEST
802 SP_SYSTEM_MANAGER_REQUEST

 804 AL_APPLICATION_REQUEST
116 State transition Restart = ACTIVE_STOPPED_RESTART

Requested by CUSS Application Manager or SP System Manager or AL
application.

Associated Status Codes
801 CUSS_MANAGER_REQUEST
802 SP_SYSTEM_MANAGER_REQUEST

 804 AL_APPLICATION_REQUEST
118 State transition Restart = SUSPENDED_STOPPED_RESTAR T

Requested by CUSS Application Manager or SP System Manager or AL
application.

Associated Status Codes
801 CUSS_MANAGER_REQUEST
802 SP_SYSTEM_MANAGER_REQUEST

 804 AL_APPLICATION_REQUEST

22 8XX will be sent to the affected application as unsolicited events, and all other status codes will be used
in the returned event of the directive issued by the requester (SM).

 Interface Definition

Revision 1.3, June 2013 128

Event Codes
Event Code Description

11922, 23 State transition Load = STOPPED_INITIALIZE

Requested by CUSS Application Manager or System Manager.

Associated Status Codes
000 OK
001 TIMEOUT
002 WRONG_STATE
003 CANCELLED
004 SOFTWARE_ERROR
303 CRITICAL_SOFTWARE_ERROR
305 NOT_RESPONDING
801 CUSS_MANAGER_REQUEST
802 SP_SYSTEM_MANAGER_REQUEST
803 AL_SYSTEM_MANAGER_REQUEST

12022, 23 State transition Load = DISABLED_INITIALIZE

Requested by CUSS Application Manager or SP System Manager after
human intervention occurs

Associated Status Codes
000 OK
001 TIMEOUT
002 WRONG_STATE
003 CANCELLED
004 SOFTWARE_ERROR
303 CRITICAL_SOFTWARE_ERROR
305 NOT_RESPONDING
801 CUSS_MANAGER_REQUEST
802 SP_SYSTEM_MANAGER_REQUEST

121 State transition Restart = UNAVAILABLE_STOPPED_REST ART

Requested by CUSS Application Manager or SP System Manager or AL
application.

Associated Status Codes
801 CUSS_MANAGER_REQUEST
802 SP_SYSTEM_MANAGER_REQUEST

 804 AL_APPLICATION_REQUEST

122 State transition Disable = UNAVAILABLE_DISABLED

Requested by CUSS Application Manager.

Associated Status Codes

303 CRITICAL_SOFTWARE_ERROR
305 NOT_RESPONDING
306 THRESHOLD_ERROR
801 CUSS_MANAGER_REQUEST

23 This is an internal platform event; the application will not yet be loaded to receive CAM events.

 Interface Definition

Revision 1.3, June 2013 129

Event Codes
Event Code Description

12322 State transition Suspend = UNAVAILABLE_SUSPENDED

Requested by SP or AL System Manager.

Associated Status Codes
000 OK
001 TIMEOUT
002 WRONG_STATE
004 SOFTWARE_ERROR
802 SP_SYSTEM_MANAGER_REQUEST
803 AL_SYSTEM_MANAGER_REQUEST

12722 State transition Resume = SUSPENDED_UNAVAILABLE

Requested by AL application or SP System Manager.

Associated Status Codes
000 OK
001 TIMEOUT
002 WRONG_STATE
004 SOFTWARE_ERROR
802 SP_SYSTEM_MANAGER_REQUEST
803 AL_SYSTEM_MANAGER_REQUEST

12822 State transition Stop = UNAVAILABLE_STOPPED_STOP

Requested by AL application or SP/AL System Manager.

Associated Status Codes
000 OK
001 TIMEOUT
002 WRONG_STATE
004 SOFTWARE_ERROR
802 SP_SYSTEM_MANAGER_REQUEST
803 AL_SYSTEM_MANAGER_REQUEST
804 AL_APPLICATION_REQUEST

129 State transition Check = INITIALIZE_UNAVAILABLE

Requested by AL application.

Associated Status Codes
804 AL_APPLICATION_REQUEST

130 State transition Check = AVAILABLE_UNAVAILABLE

Requested by AL application.

Associated Status Codes
804 AL_APPLICATION_REQUEST

132 State transition Wait = ACTIVE_ACTIVE

Requested by AL Application.

Associated Status Codes

 Interface Definition

Revision 1.3, June 2013 130

Event Codes
Event Code Description

804 AL_APPLICATION_REQUEST
133 State transition Wait = ACTIVE_UNAVAILABLE

Requested by AL Application.

Associated Status Codes
804 AL_APPLICATION_REQUEST

Application States
202 State: UNAVAILABLE

No state transition. Application is in UNAVAILABLE state.

Associated status code

000 OK
001 TIMEOUT
002 WRONG_STATE
004 SOFTWARE_ERROR

204 State: STOPPED

No state transition. Application is in STOPPED state

Associated status code
000 OK
001 TIMEOUT
002 WRONG_STATE
004 SOFTWARE_ERROR

206 State: DISABLED

No state transition. Application is in DISABLED state.

Associated status code
000 OK
001 TIMEOUT
002 WRONG_STATE
004 SOFTWARE_ERROR
303 CRITICAL_SOFTWARE_ERROR
305 NOT_RESPONDING
306 THRESHOLD_ERROR
310 KILL_TIMEOUT

207 State: INITIALIZE

No state transition. Application is in INITIALIZE state.

Associated status code
000 OK
001 TIMEOUT
002 WRONG_STATE
004 SOFTWARE_ERROR

208 State: AVAILABLE

No state transition. Application is in AVAILABLE state.

 Interface Definition

Revision 1.3, June 2013 131

Event Codes
Event Code Description

Associated status code
000 OK
001 TIMEOUT
002 WRONG_STATE
004 SOFTWARE_ERROR

209 State: ACTIVE

No state transition. Application is in ACTIVE state.

Associated status code
000 OK
001 TIMEOUT
002 WRONG_STATE
004 SOFTWARE_ERROR
309 SESSION_TIMEOUT

3.8 Media Device Behavior and Event Sequence
This section is based on CUSS 1.0 Addendum A.1.36.

The virtual component model for CUSS devices makes it more difficult to understand how “real”
device behaviour maps to the events and codes listed above. To assist in this understanding, this
section explains in detail the behaviour of MediaInput devices on a CUSS kiosk (such as card
and passport readers.)

Please review Chapter 7 for exhaustive details on how to find and use Media devices and other
device types. This section provides an explanation of how a CUSS application should manage
events from Media devices that the application has detected and acquired.

Even though information below may refer specifically to cards, it applies to any virtual device
linking that corresponds to a real media device (ATB2 coupon insertion, dip or swipe passport
readers, etc.)

Some behaviour is dependant on specific hardware capabilities. For example, the
MEDIA_INCOMPLETELY_INSERTED event can only be published when the hardware can
actually detect this condition.

 Interface Definition

Revision 1.3, June 2013 132

3.8.1 Dip Media Reader

• User inserts on front sensor only, and then removes it within a platform/device timeout,

corresponds to MEDIA_INCOMPLETELY_INSERTED.
• User inserts on front sensor, then waits (platform/device timeout) without fully inserting

or removing, corresponds to MEDIA_MISPLACED.
• User fully inserts the media and the device/platform can detect that it is incorrectly placed

(such as incorrect flux location for a card reader), also corresponds to
MEDIA_MISPLACED.

• User inserts on front sensor and then fully inserts (within platform/device timeout)
corresponds to MEDIA_PRESENT.

• If MEDIA_PRESENT is given and device/platform detects that media is faulty or
damaged, issue MEDIA_DAMAGED.

• If MEDIA_PRESENT or MEDIA_MISPLACED is given and a jam is detected (if
possible) issue MEDIA_JAMMED.

• If MEDIA_PRESENT is given and data is unavailable, issue DATA_MISSING,
FORMAT_ERROR or LENGTH_ERROR as needed.

• If MEDIA_PRESENT if given but removed before data can be read, issue
DATA_MISSING.

• Otherwise, if MEDIA_PRESENT is given and data is read, issue DATA_PRESENT
• If MEDIA_PRESENT is given and then the media is fully removed, including the front

sensor, issue MEDIA_ABSENT after the data event.
• If MEDIA_MISPLACED is given and then the media is fully removed, issue

MEDIA_ABSENT.
• If MEDIA_JAMMED is given and the jam is cleared, return MEDIA_ABSENT.

3.8.2 Motorized Media Reader

• The same meaning applies as for dip readers, where the “front sensor” implies the

throat/gate/flux sensor that is usually in place on a motorized reader.
• Fully inserted implies that the media is ingested into the device.
• The application should handle MEDIA_MISPLACED event as it would handle

MEDIA_ABSENT (ie, offer() the card back to the user for further processing.)
• Issue MEDIA_ABSENT when media is fully clear of the device (front or capture.)

3.8.3 Swipe Media Reader

• Swipe readers are quite simple devices, so will typically generated the events

MEDIA_PRESENT, then DATA_PRESENT (or DATA_MISSING), then
MEDIA_ABSENT, in sequence with little or no delay.

 Interface Definition

Revision 1.3, June 2013 133

• If the hardware supports additional status and detection capabilities, it should make use of
those sensors to generate events consistent with the dip or motorized reader behaviours
above.

Error! Not a valid link.

 Real Component Characteristics

Revision 1.3, June 2013 134

Ch 4: Real Component Characteristics

This section lists all physical components (Mandatory, Recommended, and Optional) in a CUSS
platform, including their hardware and software characteristics. For characteristics of the
corresponding virtual components, refer to Section Ch 5: (Virtual Component Characteristics).
This section includes the following subsections:

Mandatory Components

Recommended Components

Optional Components

Application developers should also review Chapter 7, which provides much of the same
information as here, but organized more practically to assist in writing code to find and use
CUSS devices in a kiosk application.

4.1 Mandatory Components – All Kiosks
All CUSS kiosks must include common virtual components representing the following devices:

Clock

CUSS

Enclosure

Display

Hard Disk

Network

System

Touch Screen Overlay

Mandatory Devices for Check-in Kiosks:

CUSS kiosks classified as check-in kiosks must include the following physical devices and
associated CUSS virtual component devices. Unless otherwise specified, platform and
application providers shall understand that a CUSS kiosk is assumed to be a Check-in Kiosk:

Boarding Pass Printer (AEA)

Magnetic Card Reader

Barcode Scanner, 2D-capable

 Real Component Characteristics

Revision 1.3, June 2013 135

Mandatory Devices for Self Bag Drop Kiosks

CUSS kiosks classified as Self Bag Drop (SBD) kiosks must include the following physical
devices and associated CUSS virtual component devices:

Self Bag Drop Coneyor with Scale and LPN-capable Barcode Scanner

Barcode Scanner, 2D-capable

Mandatory Devices for Other Kiosks

Other kiosks may be deployed that comply with the CUSS standard that are not Check-in Kiosks
or Self Bag Drop kiosks. These are understood to be specialized self-service devices that are not
intended as general passenger check-in machines.

Platform providers that choose to deploy CUSS kiosks that are not for Check-in or Self Bag
Drop should clearly indicate the intended purposes of these kiosks and there limitations.

Further, platform providers who choose to deploy non-check-in kiosks should have no
expectation that generally-available CUSS check in applictions from airline providers will
operate or be modified to operation on non-check-in CUSS kiosks.

Examples of these other types of kiosks could be:

• Document Scanning device
• Dedicated printing station
• Flight rebooking or baggage recovery kiosks

4.1.1 Boarding Pass Printer (AEA)

One printer capable of print boarding passes using the AEA standard is required. This can be a
GPP or an ATB. For additional information and guidelines on using AEA and stock
characteristics, please also review Appendices G and H.

Hardware Characteristics

Technology Any with good printing quality, to be defined in the SLA between platform
provider and service provider or application provider. AEA requires 200dpi or
greater for PCX logo printing.

Speed As defined in the SLA between platform provider and service provider or
application provider.

Bin At least one

 Real Component Characteristics

Revision 1.3, June 2013 136

Hardware Characteristics
Printing capability Landscape/portrait

Bar Code bar Code39, 128 and 2-of-5 and all its subsets in addition to IATA
RP 1720a Attachment F
Single color
Dot addressable graphics
200 dpi or more (to comply with IATA Resolution 792 for BCBP)
PECTAB support; Multiple PECTAB context29; if the printer is not able to
support PECTAB then the CUSS interface must emulate this functionality
For GPP only

Support ANSI Latin 1 character set
Unicode Character set
Support at least the following 6 fonts: 10 cpi, 10 cpi large, 17 cpi
condensed, 17 cpi condensed and bold, OCR_B, 5 cpi

For ATB only
Support of ASCII character set

Fonts: 10 cpi, 10 cpi large, 17 cpi condensed, 17 cpi condensed and bold,
OCR_B, 5 cpi, as defined by IATA 722c and 722d

Cutting/Bursting Must be done prior to user accessibility to printed document
Implementation 1 MediaOutput virtual component per Feeder component

1 Feeder virtual component per stock type if more than one stock type is
installed in the printer bins
1 Dispenser virtual component

Stock Characteristics
Media type As per IATA RP 1706e, IATA Resolutions 722c and 722e

Blank paper
Direct thermal (for GPP only)
Form
Fanfold
Roll
Detached form

Dimension As per IATA RP 1706d
Length: 203.20 mm (8 inches)
Width: 82.55 mm (3.250 inches)
Perforation: (from right edge)

ATB : 50.8 mm (2 inches)
GPP 30: 88.9 mm (3.5 inches)

4.1.2 Clock

Software Characteristics
Description Software that represents the hardware clock set at local time
Implementation DataInput virtual component
Data Definition CLOCK data type as defined in Section 3.1.9 Data:

29 At Airline application launch, CUSS platform must, if supported by the printer, load all required
PECTAB for this application in parallel to the application caching. CUSS platform does the PECTAB
context switching when the application becomes ACTIVE. This allows getting airline PECTAB without
waiting time impact. PECTAB must conform to AEA standard
30 The platform will not modify data streams to accommodate the perforation. (e.g. AEA data expecting a 2
inches perforation printed on GPP with 3.5 inches perforation).

 Real Component Characteristics

Revision 1.3, June 2013 137

Software Characteristics
yyymmddhhmmss local time

Note: The use of the hardware clock is reserved for CUSS component interface and/or CUSS
application manager. Any application trying to set the hardware clock will be flagged as having
a bad behavior.

4.1.3 CUSS

Software Characteristics
CUSS Application Manager Software that manages the CUSS applications and environment on the kiosk
Device Components Software that interfaces with peripherals
Logging Services31 Software that handles the log (system, functional and business)
System Manager Interface Software that implements the interface between SP/AL System Manager

and CUSS platform
Common Launch Application Application that will be used in idle state of the kiosk to presents

attract loop and self-service application selection

4.1.4 Enclosure

Hardware Characteristics
Power supply Inside the casing
Casing As per IATA RP 1706c (section 11.3)
Implementation No associated virtual component

31 CUSS Logging Services is not specified in CUSS 1.0. This is left up to the platform provider.

 Real Component Characteristics

Revision 1.3, June 2013 138

4.1.5 Display

Hardware Characteristics

Technology Display of any type
Character set ISO 8859-1 Latin 1

Unicode
Physical dimension Diagonal 30.48 cm / 12 inches or higher
Dimension ratio height/wide ¾
Resolution Must support at least one of the following resolutions, in pixels:

1024*768, or at least 1024 pixels wide and at least 768 pixels high
1280*1024

1600*1200
Color 16 bits or higher
Refresh rate CRT/LCD 85 or higher/60
Implementation Direct access by the application

NativeDevice class: Display ; for event generation and query only

Note: Currently only one screen resolution should be used if the touch screen overlay device is
not automatically recalibrated.

4.1.6 Hard Disk

Hardware Characteristics
Technology According to available technology
Space 1024MB per self-service application (mainly for configuration file that can be

location dependant
Implementation Direct access by the application

NativeDevice class: Storage ; for event generation and query only

4.1.7 Magnetic Card Reader

Hardware Characteristics
Mechanism Any available on the market

Recommended: Dip, swipe, or motorized
Character set ISO 8859-1 Latin 1

Unicode
Read capability Magnetic card reader must be able to read from track 1 to 3 or any

combination of these tracks. Please review Chapter 8 for Payment Data
handling requirements.

Protection Security gate (Recommended)
Implementation MediaInput virtual component

Dispenser virtual component (for motorized readers only)

Stock Characteristics
Media type Magnetic stripped card, ISO standard, low coercivity32
Dimension As per ISO standard (7810, 7811, 7812)

32 Please read Section 1.7 for guidelines about properly handling card data

 Real Component Characteristics

Revision 1.3, June 2013 139

4.1.8 Network

Hardware Characteristics

Technology According to available technology
Protocol TCP/IP
Connectivity Platform Provider discretion
Implementation Direct access by the application

NativeDevice class: Network ; for event generation and query only

4.1.9 System

This includes a computer and its associated system software. The requirements are based on the
minimum specifications required to support the technologies listed in Appendix D.

Hardware Characteristics
Speed Pentium III 1Ghz or better (or equivalent)
Memory 512MB or higher including 128 MB per CUSS application
Cache 256 KB or higher

Recommended: 512 KB or higher
Removable media USB or CD/DVD-ROM recommended
Keyboard and Mouse Recommended: 1 adapter for each (inside the casing)
Implementation No associated virtual component

Software Characteristics
Operating System Any one that supports the minimum and recommended components
Browser A standard, commercially available browser that supports the current

standard as officially released by W3C. CUSS 1.3 requires that this browser
be the Standard CUSS Browser.

CORBA environment Any ORB that implements CORBA 2.3 or higher with corbaloc support
Java environment and other
technologies

Please see Appendix D for the list of Java and other software technologies
required on a CUSS kiosk. CUSS 1.3 requires that this browser by the
Standard CUSS Java.

Character set ISO 8859-1 Latin 1
Unicode character set

Implementation No associated virtual component

4.1.10 Touch Screen Overlay

Hardware Characteristics
Technology Touch screen overlay of any type
Implementation Direct access by the application

NativeDevice class: UserInput ; for event generation and query only

 Real Component Characteristics

Revision 1.3, June 2013 140

4.1.11 Barcode Scanner with 2D support

Hardware Characteristics

Technology Any barcode scanner capable of reading 1D linear and 2D barcodes listed in
IATA Resolution 792.

Speed As defined in the SLA between platform provider and service provider or
application provider.

Scanning capability All barcode types listed in IATA Resolution 792.
2D symbologies:,

• PDF417
• QRCode
• Aztec
• Datamatrix

Common 1D symbologies (Code39, Barcode 128, Interleaved 2of5, UPC)
Implementation 1 MediaInput virtual component with the following characteristics in order to

differentiate it from a passport reader:

ComponentFonts.BarcodeStandard.Code39
ComponentFonts.BarcodeStandard.Code128
ComponentFonts.BarcodeStandard.Code2of5

4.1.12 Self Bag Drop device

Hardware Characteristics

Technology Any integrated conveyor system that integrates bag acceptance, weighing,
and scanning technologies.

Speed As defined in the SLA between platform provider and service provider or
application provider.

Scanning capability Interleaved 2of5 IATA License Plate Number barcodes:
Implementation Virtual component implementation of the AEA-SBD interface.

Virtual component implement of the CUSS-SBD interface.

See Chapter 7 for details.

 Real Component Characteristics

Revision 1.3, June 2013 141

4.2 Recommended Components
This section gives the list of all recommended components for a CUSS platform. None of them
are required but a typical CUSS platform could have some of them. Recommended components
are:

Bag Tag Printer

Door Sensor

Hardware Watch Dog

Passport Reader

Receipt Printer

UPS

ATB2 Device

4.2.1 ATB2 Device

In replacement of Boarding Pass Printer in Section 0.

Hardware Characteristics
Speed As defined in the SLA between platform provider and service provider or

application provider.
Printing capability Magnetic encoding track 1 to 4

Landscape/portrait
Bar Code bar Code39, 128 and 2-of-5 and all its subsets in addition to IATA
RP 1720a Attachment F,
Single color
Dot addressable graphics
200 dpi or more (to comply with IATA Resolution 792 for BCBP)
PECTAB support; Multiple PECTAB context33; if the printer is not able to
support PECTAB then the CUSS interface must emulate this functionality
Support of ASCII character set
Fonts 10 cpi, 10 cpi large, 17 cpi condensed, 17 cpi condensed and bold,
OCR_B, 5 cpi, as defined by IATA 722c and 722d

Implementation 1 MediaInput virtual component for the coupon reading
1 MediaOutput virtual component for writing on the inserted coupon
1 MediaOutput virtual component per Feeder component
1 Feeder virtual component per stock type if more than one stock type is
installed in the printer bins
1 Dispenser virtual component (even if an escrow is not installed)
1 Dispenser virtual component for escrow (if installed)
1 Capture virtual component for the capture bin (if installed)
1 Capture virtual component for the void bin (if installed)

33 At Airline application launch, CUSS platform must, if supported by the printer, load all required
PECTAB for this application in parallel to the application caching. CUSS platform does the PECTAB
context switching when the application becomes ACTIVE. This allows getting airline PECTAB without
waiting time impact. PECTAB must conform to AEA standard.

 Real Component Characteristics

Revision 1.3, June 2013 142

Stock Characteristics
Stock type

Blank ATB Card Type 4 stock with a magnetic stripe and without a binding
stub, as per IATA Resolution 722e.

Dimension As per IATA Resolution 722c.

4.2.2 Bag Tag Printer

Hardware Characteristics
Technology Any with good printing quality, to be defined in the SLA between platform

provider and service provider or application provider.
Speed As defined in the SLA between platform provider and service provider or

application provider.
Printing capability Landscape, portrait

Bar code as per IATA Resolution 740 Attachment B
Single or multiple color
Dot addressable graphics (for logo)
PECTAB support, multiple PECTAB contexts34. If the printer does not
support PECTAB, this functionality must be emulated by the CUSS
interface.
Support of ASCII character set
Fonts as defined by AEA and IATA

Cutting/Bursting Optionally done prior to user accessibility to printed document
Implementation 1 MediaOutput virtual component per Feeder component

1 Feeder virtual component per stock type
1 Dispenser virtual component (even if an escrow is not installed)
1 Dispenser virtual component for escrow (if installed)
1 Capture virtual component for the capture bin (if installed)
1 Capture virtual component for the void bin (if installed)

Stock Characteristics

Stock type As per IATA Resolution 740
Blank paper
Form
Roll
Fanfold
Detached form

Dimension As per IATA Resolution 740 Section 8, which contains CUSS-specific
bagTag information specification

34 At Airline application launch, CUSS platform must, if supported by the printer, load all required
PECTAB for this application in parallel to the application caching. CUSS platform does the context
switching when the application becomes ACTIVE. This allows getting airline PECTAB without waiting
time impact. PECTAB must conform to AEA standard.

 Real Component Characteristics

Revision 1.3, June 2013 143

4.2.3 Door Sensor

Hardware Characteristics
Technology According to available technology
Location Inside the casing
Implementation DataInput virtual component

Software Characteristics

Data Definition CLOCK data type as defined in Section 3.1.9 Data:
OPEN for Door open
CLOSED for Door closed
UNKNOWN for Sensor failure (unknown status)

4.2.4 Hardware Watch Dog 35

Hardware Characteristics

Technology According to available technology (PC controlled and hardware
implementation required

Implementation NativeDevice class: DataInput ; for event generation and query only; also
used for logging usage (the system must log each time it goes down
properly and each time it goes up; this is true as well for the CUSS
Application Manager itself)

4.2.5 Passport Reader

Hardware Characteristics

Mechanism Swipe or dip
Character set ISO 8859-1 Latin 1

Unicode
Read capability OCR-A

PECTAB support (optional), if the application uses a PECTAB and the
reader does not supports PECTAB, the CUSS interface must emulate this
functionality

Implementation MediaInput virtual component

Stock Characteristics
Passport type All OCR encoded passport

35 The software watch dog component (virtual watch dog component) was rejected by vote.

 Real Component Characteristics

Revision 1.3, June 2013 144

4.2.6 Receipt Printer 36

Hardware Characteristics

Technology Any with good printing quality, to be defined in the SLA between platform
provider and service provider or application provider.

Speed As defined in the SLA between platform provider and service provider or
application provider.

Printing capability Landscape, portrait
Bar Code bar Code39, 128 and 2-of-5 and all its subsets in addition to IATA
RP 1720a Attachment F
Single color
Dot addressable graphics (for logo)
200 dpi or more (to comply with IATA Resolution 792 for BCBP)
PECTAB support (optional); if the application uses a PECTAB and the
printer does not support PECTAB, this functionality must be emulated by the
CUSS interface
For GPP only

Support ANSI Latin 1 character set
Unicode Character set
Support at least the following 6 fonts: 10 cpi, 10 cpi large, 17 cpi
condensed, 17 cpi condensed and bold, OCR_B, 5 cpi

For ATB only
Support of ASCII character set

Fonts: 10 cpi, 10 cpi large, 17 cpi condensed, 17 cpi condensed and bold,
OCR_B, 5 cpi, as defined by IATA 722c and 722d

Cutting/Bursting Must be done prior to user accessibility to printed document
Implementation 1 MediaOutput virtual component per Feeder component

1 Feeder virtual component per stock type if more than one stock type are
installed in the printer bins
1 Dispenser virtual component (even if an escrow is not installed)
1 Dispenser virtual component for escrow (if installed)
1 Capture virtual component for the capture bin (if installed)
1 Capture virtual component for the void bin (if installed)

Stock Characteristics

Stock type As per IATA Resolution 1706d
Blank paper
Form
Roll
FanFold
Detached form

Dimension Height: 80 mm minimum
Length: variable

36 A receipt can be printed on a blank boarding pass.

 Real Component Characteristics

Revision 1.3, June 2013 145

4.2.7 UPS

Hardware Characteristics

Technology According to available technology (PC controlled required)
Duration The required time to do an orderly shutdown of the kiosk when power supply

fails (5 minutes minimum).
Implementation DataInput virtual component

Data Definition
Battery Power supply down

Battery low
Normal Battery charged

Power supply up
Power Power supply down

Battery charged
Empty Battery empty

Power supply up

4.3 Optional Components
This section gives a list of optional components for a CUSS platform that are used by a restricted
number of airlines. This is not an exhaustive list of all possible components on a CUSS platform,
and the list is merely provided as an example.

None of the components on this listed are required but these components can be installed as
based for a specific airport implementation as well as on specific airline request.

Note that some devices are secured (e.g. by key lock or PC controlled access). This feature will
not be shown in the table below but rather in the component characteristics (Refer to Section Ch
5:: Virtual Component Characteristics) of the applicable devices.

Optional Components

Real Component Description Media
Audio Sound card and speakers with

adjustable volume
Nil

Bills capture bin Box to capture bills Bills country dependant
Bills dispenser Device that give bills to the

customer
Bills, country dependant

Bills reader Device that read the bill value Bills , country dependant
Boarding pass dispenser bin Device that supply boarding

passes
Boarding passes as per IATA
standard

Boarding pass capture bin Box to capture Boarding passes
printed or read

Boarding passes as per IATA
standard

Chip card capture bin Box to capture chip card Chip card as per ISO 7816 & EMV
1.3.2 standard

Chip Card Device Contact Chip Card as per ISO 7816 & EMV
1.3.2 standard

 Real Component Characteristics

Revision 1.3, June 2013 146

Optional Components

Real Component Description Media
Chip card dispenser bin Box to supply chip card Chip card as per ISO 7816 & EMV

1.3.2 standard
Chip Card Reader Contact Chip Card as per ISO 7816 & EMV

1.3.2 standard
Chip Card Writer Contact Chip Card as per ISO 7816 & EMV

1.3.2 standard
Coins capture bin Box to capture coins Coins, country dependant
Coins dispenser Device that give coins to the

customer
Coins, country dependant

Coins reader Device that read the coins value Coins, country dependant
Device Sentry A device that controls power

supply of other component
Nil

Digital I/O Digital/Analog conversion card
with device attached to it or Digital
card with digital device attached

Nil

Escrow A PC controlled escrow Boarding pass as IATA standard
Fingerprint reader Device to read human fingerprints Nil
GPP Printer General Purpose Printer Paper as per current standard A4

or 8.5*11, and/or as needed for
specialty documents.

Hand reader Device to read the hand shape Nil
Iris Scanner Biometrics device to scan the eye

iris
Nil

Keypad Nil
LED Indicator Nil
Magnetic card capture bin Box to capture magnetic card Magnetic card as per ISO standard
Magnetic Card Device Reader and encoder Magnetic Card as per ISO

standard
Magnetic card dispenser bin Box to supply magnetic card Magnetic card as per ISO standard
Magnetic Card encoder Magnetic Card as per ISO

standard
Media sensor Device to detect the

presence/absence or the level of
media

Any kind of media handled by the
associate device

Motion detector Nil
OCR reader Paper with text
PIN Pad Pin Pad block Nil

Proximity Sensor Change state when leaving Nil
 RF ID Radio Frequency reader (e.g. RF

contactless smartcard)
RF card or other RF media

Retina or other biometric reader Nil
Secure Enclosure PC controlled enclosure lock Nil
Speaker Nil
Ticket printer TAT as per IATA standard
Video Camera A PC controlled video camera Nil
Visual Customer Assistance Light Bigger than LED indicator Nil
Weight Scale Nil

Any printer device in the kiosk must meet the IATA Resolution 792 for Bar-Coded Boarding
Pass requirements by offering 200dpi or better print resolution.

 Real Component Characteristics

Revision 1.3, June 2013 147

 Virtual Component Characteristics

Revision 1.3, June 2013 148

Ch 5: Virtual Component Characteristics

This section briefly describes the characteristics of the various virtual components that make-up
the CUSS Platform. Some of these characteristics may or may not be applicable depending on
the physical device that is being represented by the corresponding virtual component(s). In
addition, most of these component characteristics are read-only. For those characteristics that
could be set by a CUSS application, a corresponding “set” directive has been provided.
For more detailed information, please refer to the “characteristics.idl” (Appendix C) file
provided as part of the CUSS Technical Specifications.
This section includes the following subsections:

Common Characteristics

Application Characteristics

Capture Characteristics

DataInput Characteristics

DataOutput Characteristics

Dispenser Characteristics

Note 1 (CUSS 1.0 Addendum A.1.44):

Certain types of devices can include a Dispenser component that does not actual present its
media to the user. These devices are internal “feeders” but incorrectly qualified as Dispensers
within this CUSS standard. An example of such a device is the Dispenser associated with the
insertion slot of an ATB2 reader/printer, which ejects the inserted coupon into an escrow device.

The platform must identify any of these “userless” Dispensers so that the application can interact
with them correctly (for example, the application does not need to call the offer() directive for a
userless component.)

Any virtual component in a CUSS device linking that is classified as a Dispenser but does not
interact with the user (ie, dispenses/feeds to another part of the device) must include in its
firmwareVersion characteristics string the following string:

FEEDER_USERLESS

Display Characteristics

Feeder Characteristics

MediaInput Characteristics

 Virtual Component Characteristics

Revision 1.3, June 2013 149

MediaOutput Characteristics

Network Characteristics

Storage Characteristics

UserInput Characteristics

UserOutput Characteristics

Application developers should also review Chapter 7, which provides much of the same
information as here, but organized more practically to assist in writing code to find and use
CUSS devices in a kiosk application.

 Virtual Component Characteristics

Revision 1.3, June 2013 150

Note: Some attributes may not be applicable. This depends on the corresponding real
component (e.g. IOMode apply doesn’t apply for GPP MediaOutput and timeZone
doesn’t apply to door sensor data input) and whether or not the corresponding physical
attribute is actually supported by the real component (e.g. if a stock sensor or a document
counter is present or not).

Note 1:
After the original CUSS 1.0 specification was released, it became apparent that the Interface
Characteristics fields were not enough to convey all types of information needed by CUSS
applications. For this reason, some Characteristics fields are being reused and “overloaded” to
contain additional details. Please review Section 5.15 for a list of cases where this approach has
been defined.

Note (CUSS 1.0 Addendum A.1.44):
Certain types of devices can include a Dispenser component that does not actual present its
media to the user. These devices are internal “feeders” but incorrectly qualified as Dispensers
within this CUSS standard. An example of such a device is the Dispenser associated with the
insertion slot of an ATB2 reader/printer, which ejects the inserted coupon into an escrow device.

The platform must identify any of these “userless” Dispensers so that the application can interact
with them correctly (for example, the application does not need to call the offer() directive for a
userless component.)

Any virtual component in a CUSS device linking that is classified as a Dispenser but does not
interact with the user (ie, dispenses/feeds to another part of the device) must include in its
firmwareVersion characteristics string the following string:

FEEDER_USERLESS

Non-applicable values are either represented as:
–1 (for attributes of type integer or string) or
nonApplicableValue (for attributes of enumerated types).

 Virtual Component Characteristics

Revision 1.3, June 2013 151

5.1 Common Characteristics
The following Characteristics are shared by some characteristics outlined in Sections 5.2 through
5.14.

5.1.1 Bin Settings

Attribute Description

BinSize
Describes the maximum number of documents a bin can hold.
This corresponds to the MEDIA_FULL status.

AlmostFullLevel
Shows high threshold of the bin: the number of documents
correspondent to MEDIA_HIGH status (e.g. for a Capture
component), if corresponding sensor is installed.

AlmostEmptyLevel
Shows low threshold of the bin: the number of documents
correspondent to MEDIA_LOW status (e.g. for a Feeder
component), if corresponding sensor is installed

currentNoOfDocuments

Shows the current number of documents in the bin, if document
counter is present. This number is not always guaranteed to be
accurate (e.g. AlmostEmptylevel has not been reached for a
feeder component). On the other hand, when AlmostEmptyLevel is
reached, the counter should reflect the best count possible (This
depends on tolerance of stock thickness and assumes no human
manipulation of document counter)

Note 1 (CUSS 1.0 Addendum A.1.38):
The platform must accurately set these characteristics for any Dispenser component where real
capacity limits exist. This allows a CUSS application to accurately manage multiple-document
jobs.

5.1.2 ComponentFonts

Attribute Description

usedStandard
Specifies which barcode standards are used (code39 or code128
or code2of 5) if applicable

Fonts

List of all Fonts (and their attributes) available from this
component. Font attributes are: fontName, fontSizes, vectorFont,
bold, italic, underlined, strikethrough, reverse, superscript,
subscript, colorDepth, spacing, and CharacterLength.

5.1.3 IOMode

Attribute Description

mode
The currently used mode for reading/writing (Check-in or
Revalidation for ATB) if applicable

 Virtual Component Characteristics

Revision 1.3, June 2013 152

5.1.3.1 setIOMode

Description Set the input/output mode for ATB printers.
Apply to All acquired virtual components of class "MediaInput" or

"MediaOutput”
Available AL application (in INITIALIZE or ACTIVE state)
Access Exclusive, local/remote, synchronous
Structure sent Application Token: A valid active application reference, defined in

Section 3.1.4
 InputOutputMode: The input/output mode to be used (check-in or
Revalidation)

Structure returned ReturnCode, defined in Appendix A

Note: setIOMode directive is context-specific; when the application becomes ACTIVE,
the platform ensure to select the proper context of that application.

5.1.4 Location

 Attribute Description

Map URL to location image file of a kiosk component

mapType The type of the image (BMP, GIF, JPEG, PNG, Flash, etc) if
applicable

howTo URL to usage image/animation file of a kiosk component

howToType The type of the image/animation (GIF, JPEG, Flash etc) if
applicable

componentLocation Where to find the component (Inside or outside the kiosk)

5.1.5 Manufacturer

 Attribute Description

realComponentIdentification
Component identification for use by system manager. (e.g. ATB-
Printer-BIN1)

downloadableFirmware Describes whether the firmware can be updated or not.

firmwareVersion Version of firmware/software.

manufacturerName Name of manufacturer.

modelNumber Model number of hardware component.

serialNumber Serial number of hardware component.

5.1.6 MediaType

 Attribute Description

typ e
Attribute containing one media type of the following:
MagneticStripe, Chip, Printed (OCR/Barcode/Plain paper), JIS

 Virtual Component Characteristics

Revision 1.3, June 2013 153

5.1.7 MediaTypeList

 Attribute Description

mtList List of media types. (Refer to Section 5.1.6: MediaType)

5.2 Application Characteristics
Please refer to the Section 5.1.5: Manufacturer attributes as well as the attributes listed below.

Attribute Description

identification Kiosk Application identification.

allContacts

The list of all available company contacts each including: company
name, person name, address (postal, phone, fax, pager, e-mail, or
remote support application address, if applicable) and an
unspecified note on person or company.

frstIPPort
Specifies the first of IP-Port range that can be used by this
application.

lastIPPort
Specifies the last of the IP-Port range that can be used by this
application.

5.3 Capture Characteristics
Please refer to the Section 5.1.1: Bin and the Section 5.1.5: Manufacturer attributes.

5.4 DataInput Characteristics
Please refer to the 5.1.5: Manufacturer attributes as well as the attributes listed below.

Attribute Description

timeZone
The time difference in hours relative to GMT. (This is applicable to
Clock component)

supportedDataTypes 1
The list of data types supported by this component (CLOCK, MSG,
NIL, SWITCH)

5.5 DataOutput Characteristics
Please refer to the Section 5.1.5: Manufacturer attributes as well as the attribute listed below.

Attribute Description

supportedDataTypes 2
The list of data types supported by this component (MSG, NIL,
SWITCH)

1 DataInput::supportedDataTypes is not included in CUSS 1.0 IDL.
2 DataOutput::supportedDataTypes is not included in CUSS 1.0 IDL.

 Virtual Component Characteristics

Revision 1.3, June 2013 154

5.6 Dispenser Characteristics
Please refer to the Section 5.1.1: Bin, the Section 5.1.4: Location, and the Section 5.1.5:
Manufacturer attributes as well as the attribute listed below.

 Attribute Description

kind 3

Specifies whether it is a real dispenser or virtual one.
A dispenser component is real if an offer() directive is mandatory
to make the document(s) available to the user (such as ejecting a
card from a motorized reader, or opening an escrow door).
A dispenser component is virtual if documents are available to the
user immediately and without a call to offer() such as with a paper
output chute.

Both types of dispenser may or may not have sensors to detect if
a document is present in the dispenser. Please review Section
3.6.9.1 offer() for more information on how to use this
Characteristic and the Dispenser component status indicators to
properly present documents to the user and to monitor (where
possible) if the documents have been taken.

Note 1 (CUSS 1.0 Addendum A.1.44):

Certain types of devices can include a Dispenser component that does not actual present its
media to the user. These devices are internal “feeders” but incorrectly qualified as Dispensers
within this CUSS standard. An example of such a device is the Dispenser associated with the
insertion slot of an ATB2 reader/printer, which ejects the inserted coupon into an escrow device.

The platform must identify any of these “userless” Dispensers so that the application can interact
with them correctly (for example, the application does not need to call the offer() directive for a
userless component.)

Any virtual component in a CUSS device linking that is classified as a Dispenser but does not
interact with the user (ie, dispenses/feeds to another part of the device) must include in its
firmwareVersion characteristics string the following string:

FEEDER_USERLESS

5.7 Display Characteristics
Please refer to the Section 5.1.4: Location and the Section 5.1.5: Manufacturer attributes as well
as the attributes listed below.

Attribute Description

3 Clarification taken from Addendum A.1.11.

 Virtual Component Characteristics

Revision 1.3, June 2013 155

displayResolution List of supported screen resolutions:
1024 indicates a resolution of 1024 by 768
1280 indicates a resolution of 1280 by 1024
1600 indicates a resolution of 1600 by 1200.

Note: Currently only one screen resolution should be used if the
touch screen overlay device is not automatically recalibrated.

It is recommened that application suppliers use native
programming methods to detect the current resolution of the
Display device.

It is acceptable for a CUSS platform to provide any screen
resolution that is at least 1024 pixels wide and at least 768 pixels
high, including portrait mode displays and displays in aspect ratios
other than 4:3.

currentResolution Currently used screen resolution.

screenDiagonal Physical screen size measured in Millimeters.

5.7.1 setScreenResolution

Description Sets a new resolution for the display.
Apply to All acquired virtual components of class “Display”
Available AL application in ACTIVE state
Access Exclusive, local/remote, synchronous
Structure sent Application Token: A valid active application reference, defined in

Section 3.1.4
 Resolution: The screen resolution to be used by the application

Structure returned ReturnCode, defined in Appendix A

Note: setScreenResolution should return RC_NOT_SUPPORTED if not implemented by
the platform.

5.8 Feeder Characteristics
Please refer to the Section 5.1.4: Location and the Section 5.1.5: Manufacturer attributes.

5.9 MediaInput Characteristics
Please refer to the Section 5.1.1: ComopnentFonts, the Section 5.1.3: IOMode, the Section 5.1.4:
Location, the Section 5.1.5: Manufacturer, and the Section 5.1.7: MediaTypeList attributes as
well as the attributes listed below.

Attribute Description

 Virtual Component Characteristics

Revision 1.3, June 2013 156

typeOfReader The kind of reader that is handled by this component (Motorized,
DIP, Swipe, Contactless, FlatbedScan, PenScan).

supportedDataTypes The list of data types supported by this component (AEA, MSG, NIL)

setupDataType 4
Describes the type of data stream that is supported by this
component.

numberOfTracks The number of tracks that can be read by the components.

5.10 MediaOutput Characteristics
Please refer to the Section 5.1.1: ComopnentFonts, the Section 5.1.3: IOMode, the Section 5.1.4:
Location, the Section 5.1.5: Manufacturer, and the Section 5.1.7: MediaTypeList attributes as
well as the attributes listed below.

Attribute Description

type
Attribute containing type of media used (Ticket, BoardingPass,
GeneralPurposeDoc, BaggageTag, InsertedDoc, Card)

supportedDataTypes The list of data types supported by this component (AEA, MSG, NIL,
SVG)

bufferSize Size of the internal data buffer.

numberOfTracks The number of tracks that can be written by the components.

minDocumentLength The minimum length of a document measured in Millimeters.

maxDocumentLength The maximum length of a document measured in Millimeters.

maxPrintSizeX The maximum printing size in X direction measured in Millimeters.

maxPrintSizeY The maximum printing size in Y direction measured in Millimeters.

mediaTransferType 5
Specification of printing technology used: DirectThermal or
ThermalTransfer (ribbon-based) or nonApplicable (for non-printer
devices; e.g. card writer)

printOrientation The current print orientation (Portrait or Landscape)

5.10.1 setPrintOrientation

Description Sets the printing orientation to be used by this component.
Apply to All acquired virtual component of class “MediaOutput”
Available AL application in ACTIVE state
Access Exclusive, local/remote, synchronous
Structure sent Application Token: A valid active application reference, defined in

Section 3.1.14
 Orientation: The printing orientation (Portrait or Landscape)

Structure returned ReturnCode, defined in Appendix A

4 MediaInput::setupDataType is not used in CUSS 1.0.
5 In CUSS 1.0 IDL, MediaOutput::mediaTransferType attribute is missing. Instead, its value
(DirectThermal or ThermalTransfer) should be inserted somewhere inside the string representing
Manufacturuer::ModelNumber attribute.

 Virtual Component Characteristics

Revision 1.3, June 2013 157

Note: The application must check the print orientation (and set it if necessary) every time it
becomes ACTIVE to guarantee the correct orientation (a previously active application might
have changed the orientation).

5.11 Network Characteristics
Please refer to the Section 5.1.5: Manufacturer attributes.

5.12 Storage Characteristics
Please refer to the Section 5.1.5: Manufacturer attributes as well as the attributes listed below.

Attribute Description

Size Specifies the total size (in MB) available for an application on a
disk.

Path

Specifies the complete path to writeable/readable location (all path
specifications end with a separator, e.g. slash or backslash). For
example, under Windows, the Path would be something like
C:\CUSS\APPS\AC\CKC\.

In CUSS 1.2, the Path attribute will give the full path of the location that contains the
application’s local files. If the application has no local files, it will point to a directory created by
the platform on the kiosk reserved for use by that application.

CUSS 1.2 platforms must create and provide Storage components for each application in a
fashion that allows each application to have its own unique Path characteristic. The storage
location can either be local to the kiosk or on a network, but the directory must be unique to the
kiosk application and the specific kiosk (not shared with the same application on other kiosks.)

(For reference, this behaviour is changed from the original CUSS 1.0 Technical Specification,
where the path component was shared between all applications.)

5.13 UserInput Characteristics
Please refer to the Section 5.1.4: Location and the Section 5.1.5: Manufacturer attributes.

5.14 UserOutput Characteristics
Please refer to the Section 5.1.4: Location and the Section 5.1.5: Manufacturer attributes.

5.15 Free-form Characteristics Settings
After the original CUSS 1.0 specification was released, it became apparent that the Interface
Characteristics fields were not enough to convey all types of information needed by CUSS

 Virtual Component Characteristics

Revision 1.3, June 2013 158

applications and kiosks. For this reason, some Characteristics text fields are being reused and
“overloaded” to contain additional details.

This section provides a summary of where such “extra settings” have been defined. For details
on why each setting is used, please refer back to the original section indicated in the table.
Applications that need to detect if an override is used should use case-insensitive substring
matching.

 Virtual Component Characteristics

Revision 1.3, June 2013 159

Purpose Device Section Characteristic Used Strings
Find paper perforation
location

ATB and GPP printers Appendix D Manufacturer::modelNumber (Feeder)
Perf=2
Perf=3.5

Check which version of AEA
is supported by the printer

ATB and bag tag
printers

Appendix D Manufacturer::firmwareVersion
(MediaOutput)

AEA2009 [for CUSS 1.3]
AEA2008 [for CUSS 1.2]
AEA1999
AEA2002

Identify different types or
qualities of Boarding pass
stock

ATB printers Appendix G Manufacturer::modelNumber (Feeder)

ECONOMY
BUSINESS
FIRST
WALLET

Determine the thermal
printing capabilities of an
ATB2 printer

ATB printers Appendix G
Manufacturer::modelNumber
(MediaOutput)

DirectThermal
ThermalTransfer

Does the AEA bagtag printer
support color printing AEA bagtag printers Appendix D

Manufacturer::firmwareVersion
(MediaOutput)

ZSOK00
ZSOK010203 [etc]

Can a barcode scanner read
certain extended barcode
types (2D, etc), as
distinguished from another
reader on the kiosk that
cannot?1

Barcode scanners
Chapter 6
Appendix H

Manufacturer::firmwareVersion
(MediaInput)

DS_TYPES_SCAN_PDF417
DS_TYPES_SCAN_*
[etc]
(can include multiple, see
Appendix H)

Is a Dispenser component
internal and userless (offer()
not required)

ATB Printers with
Escrow Section 5.6

Manufacturer::firmwareVersion
(Dispenser) FEEDER_USERLESS

See if the documents being
printed have a secure/control
number

Printers Appendix G Manufacturer::serialNumber (Feeder)
CTRL:<document id>
CTRL:-1

1 CUSS 1.2 kiosks must include a barcode scanning device capable of reading PDF417 and other IATA Resolution 792 barcodes.

 Virtual Component Characteristics

Revision 1.3, June 2013 160

Purpose Device Section Characteristic Used Strings

Determine if a reader device
supports any extended media
type(s)

Media readers (OCR or
flatbed scanners, card
readers, etc.)

Chapter 6
Appendix H

Manufacturer::firmwareVersion
(MediaInput)

DS_TYPES_IMAGE_IR
DS_TYPES_JIS2
[etc]
(can include multiple, see
Appendix H)

Determine if a writer device
can produce media with any
extended media type(s)

Writer devices (card
encoders, printers, etc.)

Chapter 6
Appendix H

Manufacturer::firmwareVersion
(MediaOutput)

DS_TYPES_SAFLOK
DS_TYPES_TIMELOX
[etc]
(can include multiple, see
Appendix H)

Find exact vendor version of
platform Environment

Section
3.3.1.1

EnvironmentLevel::cussInterfaceVersio
nMax <platform version string>

Determine if a kiosk is offsite
(not at an airport) Environment

Section
3.3.1.2 EnvironmentLevel::kioskLocation OFFSITE

Does a printer support PDF
printing GPP Printers

Section
6.4.2

Manufacturer::firmwareVersion
(MediaOutput) DS_TYPES_PRINT_PDF

Does a printer support 2-sided
printing GPP Printers

Section
6.4.3

Manufacturer::firmwareVersion
(MediaOutput) TWOSIDED

 Extended Device & Media Type Handling

Revision 1.3, June 2013 161

Ch 6: Extended Device & Media Type Handling

The original CUSS 1.0 standard was designed to operate with the “normal” self-service devices
on a kiosk, such as an ATB2 or GPP printer, or an ISO magnetic card reader. However, many
new devices used in kiosks blur the line between these typical devices, and combine multiple
functions, data types, and operations.

• Integrated document scanner that supports multiple formats:
o MRZ and embedded barcode decoding
o Visible and non-visible imaging
o RFID reading and updating

• Card readers/writers that include non-ISO formatting
o JIS2 or magnetic lock formats
o Integrated chip card support
o Optical scanning an imaging support

• Barcode scanners that support new types of data
o 2D barcode such as DataMatrix, Aztec, etc

These types of devices present a challenge to the CUSS virtual device component model, as it is
difficult to define a way of identifying, setting up and using these devices and data formats that is
consistent across CUSS platforms and applications.

6.1 Practical and Technical Considerations

Here are the main issues to address in defining how these types of device are used in the CUSS
device component model:

1. The number of distinct data types supported by a device might be quite large. For
example, an ICAO-compliant RFID passport reader can support up to twenty different
RFID data formats, in addition to all other optical or OCR formats. A magnetic card
encoder can support numerous different encoding formats (for hotel door locks, for
example.)

2. The hardware device may or may not support reading all the data at once (vs. selectively
reading only an individual data element.)

3. Reading or writing some data types may be very expensive operations. For example,
some document scanner operations can take in excess of 20 second to perform a full scan
and document validation.

4. A component model with extended device/data support should not be implemented in any
way that may mislead a CUSS application which has no knowledge or logic for handling

 Extended Device & Media Type Handling

Revision 1.3, June 2013 162

these extended data types. For example, if an application only wants a normal passport
reader component, it should not “accidently” get an RFID passport scanner component.

5. Even though the component model supports multiple linked virtual components, the level
of linking must remain relatively simple, for complexity issues both of platform
implementation and application design and detection.

6. Many applications require the ability to read or write different types of data using
separate calls to the CUSS platform. This requirement can be the result of business logic
within the application, bandwidth constraints between the kiosk and the processing
system, legal requirements that prevents applications from reading some data unless
certain conditions are met.

6.2 Identifying an Extended Data Component

Each specific type of extended data is identified by a unique string starting with “DS_TYPES”
and an associated unique number.

The string is used as part of a component device characteristic, and lets the CUSS application
identify and use the correct component for that type. The number is used as an index to insert or
extra data into the component data events and requests.

The full list of extended DS_TYPES is presented in Appendix H. This list may be amended from
time to time in order to add new data types, as CUSS kiosks integrate new devices. Please
consult any updated Addendum documents for more details.

A platform must implement and an application must support the following process for extended
data types, if they need support for the non-standard data type in question:

1. Examine the Appendix to determine which data types are required and suitable for the
device being used.

2. For each MediaInput and/or MediaOutput virtual component for that device, include in
the firmwareVersion Characteristics value all the strings (zero, one, or more) for the
extended types of data supported by the component. Different components may support
different types (see below.)

3. To identify support to a specific data type, include the string literal of the constant used
for that data type, such as “DS_TYPES_VING” for const long DS_TYPES_VING =
1000;

4. An application should examine the firmwareVersion and other component characteristics
it needs to locate and use the devices and components it needs.

5. The default media type DS_TYPES_ISO is assumed and does not need to be explicitly
listed within firmwareVersion.

6. If multiple DS_TYPES are included in a single component, they must be space or
comma-delimited.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 163

7. CUSS applications should only use these DS_TYPES indication characteristics, and not
on other inappropriate fields such as the RealComponentName.

Here are sample characteristics firmwareVersion strings defining data support:

 7654327V1.17(h07/31/03) (DS_TYPES_IMAGE_IR,DS_TYPES _IMAGE_UV,DS_TYPES_BARCODE)

 DS_TYPES_ISO DS_TYPES_VING DS_TYPES_SAFLOK

6.2.1 Setting up and Using an Extended Data Compone nt

To maintain behaviour consistent with the CUSS standard by default:

1. A CUSS platform must not enable any extended media type unless specifically requested
by an application via the setup() directive.

2. The platform resets the media type after each application session. In other words, the
media type setup is reset after each session and is not context-persistent.

3. The application must call setup() when it is ACTIVE, prior to calling enable(). The
platform shall ignore calls to setup() while the device is enabled, due to hardware
restrictions that may exist on enabled devices.

4. If an application calls setup() multiple times, each call completely resets the selected
media types to only those indicated in the most recent setup() call.

5. It is recommended, but not required, that platforms provide support for extended data
types in Single-App Mode with Media Off Roller. In this case, point (2.) would not
apply, and applications are obliged to also call setup() in INITIALIZE mode, which
settings the platform would then retain and enable while the single application is
AVAILABLE.

The application must use the setup() directive to enable extended media types, as described
above, both for MediaInput and MediaOutput devices as appropriate.

1. The ds (types::datastream) parameter must be of type msgDataType.
2. The msgDataType parameter must include one record for each media type requested,

including DS_TYPES_ISO if needed!
3. The dataStatus status field in each record must contain the constant value for the media

type that the application wants to enable.
4. The bytestream message field in each record must contain any media type-specific setup

information required by that device, if any is listed in the media type table below.
Typically this will not be needed, however, but this is made available for future
expansion.

5. Each media type should only be listed once within msgDataType.
6. The platform will return RC_UNAUTHORIZED if any of the media types is not

supported, and not enable any of the other listed media types.
7. Some media types might have large data objects, or take extra time to physically enable

or retrieve on the device. For this reason, apps should only enable the extended types they
need, especially if event data is sent “over the wire”.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 164

8. When referring to an image type, the specific type implied is the image format specified
within the CUSS 1.2 table of supported technologies.

6.3 Sending and Receiving Extended Data

6.3.1 Obtaining data from an extended MediaInput co mponent

Once the device is enabled for particular type(s) of data, the procedure for receiving data from
that device is the same as for normal media input devices (e.g. receive().) However, the
msgDataType should contain addition records for the new media types returned by the device.

1. The dataStatus status field for each record will be the sum of the extended media type,
and the actual data status for that media record. For example, corrupted VING keylock
data would be indicated by data status DS_CORRUPTED+DS_TYPES_VING (1001.)
For example, an empty FOID card data track would be
DS_ZEROLENGTH+DS_TYPES_FOID (103.)

2. For backwards compatibility, the first records indicate ISO tracks 1, 2 and 3.
3. The bytestream message record for an extended data type is data in the format expected

for that type, either as documented in the table below, or as widely understood in the
industry.

4. Data records for some types might be very large, especially for image/biometric types.
5. When referring to an image type, the specific type implied is the image format specified

within the CUSS 1.0 table of supported technologies.
6. If DS_CORRUPTED is provided by the platform as the data status, then there will be no

associated data returned: ie, the platform will not provide the partial/corrupted data to the
application.

6.3.2 Sending data to an extended MediaOutput compo nent

When using a MediaOutput device with extended media types, the concept is analogous to the
msgDataType described above. However, the application must use the send() directive with a
properly-formed msgDataType.

1. The dataStatus status field for each record must be the extended media type, such as
DS_TYPES_VING (1000)

2. The bytestream message for sending the extended type is data in the format expected for
that type, either as documented in the table below, or as widely understood in the
industry.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 165

6.3.3 Support for Validated Data

Certain devices may have the ability to flag aspects of the data they provide as “validated”. For
example, a secure passport reader may be able to validate that the UV image for a given passport
is in fact “valid” based on the expected UV appearance of documents from that passport’s
issuing country.

1. Any virtual MediaInput or MediaOutput component that supports validation must include
“VALIDATE” in the firmwareVersion characteristics string for that component.

2. An application that wishes to receive validated data must include the term “VALIDATE”
in the setup() directive in setting up the component.

3. If set up for validation, data received from a component will include a status indicator for
the validated or invalid data. See the table below.

6.3.3.1 Validated Data Status Indicators

To support proper status indication for data received from components that support validation
and for which validation is enable, data records may include the following new data status (DS)
values.

1. DS_DOCUMENT_AUTHENTICATION_FAILED – The document is readable and
valid, but modifications or tampering has been detected.

2. DS_MISMATCH – The document is readable and valid, but the data from one aspect of
the document (for example, RFID) does not match a different aspect (for example, the
MRZ)

3. DS_INVALID – The document is readable but considered invalid (as determined by the
device validation mechanism.)

6.3.4 Component Model for Extended Devices

The CUSS virtual component linking model provides a very flexible way of exposing to CUSS
applications the features of a real device. To allow proper and consistent operation of the CUSS
platform and CUSS applications, and to minimize the complexity of implementing and using
these extended devices, the following are agreed as being design points for setting up extended
data component linking:

1. The data model can NEVER result in a case where an application might incorrectly detect
the wrong component when it is following the Real Device Behaviour Clarification
guidelines. For example, a component with extended data types cannot “look” like a

 Extended Device & Media Type Handling

Revision 1.3, June 2013 166

normal passport reader, etc, if an application is only looking at the standard
characteristics and is not “aware” of the DS_TYPES logic.

2. As such, virtual components (MediaInput, MediaOutput) that list DS_TYPES_ in there

characteristics must us “nonApplicableMediaType” as their media type characteristics,
when needed to avoid false detection.

3. A device that supports multiple extended data types should present a separate virtual

component for each “media type” and “group of extended data types”, including the
standard types. For example, a flatbed scanner with e-passport RFID support would be
four components:

a. “normal” passport MediaInput (Printed, notApplicableBarcodeStd) for OCR data
b. “normal” barcode MediaInput (Printed, usedBarcodeStd128) for scan data
c. “special” image MediaInput (nonApplMediaType) listing all

DS_TYPES_IMAGE types it supports
d. “special” e-chip MediaInput (nonApplMediaType) listing all

DS_TYPES_EPASSPORT_DGx types it supports.

4. For example, a scanner that supports only 2D PDF417 scanner should be a MediaInput,
on a nonApplicableMediaType, with a notApplicableBarcodeStandard, and listing
DS_TYPES_SCAN_PDF417 in characteristics. That way only an app that is explicitly
looking for that extended type will find/use this component.

5. On the other hand a typical CUSS 1.2-compliant scanner that supports normal 1D
barcodes in addition to PDF417 (and possibly other 2D barcode types) should use a
single BarcodeStandard::Code128 component instead with the MediaTypeDef set to
Printed as listed in Chapter 7, as false detection is not an issue.

6. A passport scanner that supports both 1D and 2D barcodes in compliance with CUSS 1.2
is not required to report in its Characteristcs which types of 2D barcode are supported.
Application this must not assume that, for example, DS_TYPES_SCAN_PDF417 will be
reported on all barcode scanners, as PDF417 support is a requirements for CUSS 1.2
compliance.

7. On the other hand a scanner that supports normal 1D barcodes in addition to PDF417
could us a single usedBarcodeStd128 component instead, as false detection is not an
issue.

8. Applications should ignore the “media type” characteristics if it is searching for a specific

component that has this media type. This is a requirement since the type might now be
“nonApplicable” instead of “Chip” or “Printed”.

9. Legacy CUSS 1.0 and CUSS 1.1 implementations based on the DS_TYPES approaches

covered in A.1.34 and A.1.45 are not required to change for CUSS 1.2 compliance, due
to the limit scope of their deployment on proprietary CUSS hotel and airline kiosks.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 167

10. New devices including e-Passport scanners must follow this revised model to be CUSS

1.2 compliant.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 168

6.4 Non-AEA Printing on General Purpose Printers (G PP)

This section discusses how kiosk applications can use General Purpose Printers (GPPs) that are
available on CUSS kiosks, to product more complex documents than allowed by the AEA print
standard.

As mentioned in Section 4.1.1, the minimum printer requirement on a CUSS kiosk is to have a
Boarding Pass printer supporting the AEA printer language. Some kiosks, typically those that
use a legacy ATB2-style printer with native AEA support, do not support GPP printing or non-
AEA print data. For this reason, even if a CUSS application can use GPP printing, it should
always have the ability to “fall back” to AEA printing only, on kiosks that do not support GPPs.
For more detail on printing with AEA, please read Appendix D and Chapter 7.

Important Note: a CUSS kiosk may provide more than one GPP printer. For example, a
kiosk may include a receipt printer, a boarding pass printer, and a specialty printer such
as a Heavy Tag printer for bag drop kiosks.

CUSS applications that use SVG should not assume all GPP printers are of equal
capability. For example, applications with receipt printing functions should attempt to use
the printer that provides a PrintSize that matches the applications’s requirements for
receipts, instead of the first available GPP printer.

6.4.1 Printing using SVG (Scalable Vector Graphics)

New applications written for CUSS 1.2 that use a GPP may prefer to implement PDF documents
(see Section 6.4.2 below) instead of SVG, as PDF is more suitable to documents.

A CUSS 1.2 kiosk that provides a General Purpose Printer (GPP) that lists SVG in its
MediaOutput supportedDataTypes characteristic must support SVG printing. For more
information on finding and using a GPP, please review Section 7.11.

To properly print SVG documents, applications shall follow these requirements. Compatibility
problems with SVG printing should be brought to the attention of the CUSS Technical Solution
Group for resolution.

1. Examine the maxPrintSizeX and maxPrintSizeY printer characteristics (in millimetres) to
create documents that will fix correctly on the page. If larger documents are sent to the
GPP the result may be scaled or truncated and not appear correctly. Platforms must
ensure that these characteristics values are accurate (not to 0mm.)

 Extended Device & Media Type Handling

Revision 1.3, June 2013 169

2. If the SVG print data refers to external resources (such as image files) provided by the
application, the SVG data stream must include the full path and filename of the resource.
Applications should use the path returned from the Storage component to detect where
the application root directory on the kiosk is.

3. Applications shall generate SVG print data that includes to full name space inside the

<svg> block: xmlns="http://www.w3.org/2000/svg"
xmlns:xlink=http://www.w3.org/1999/xlink

4. SVG document size shall be limited to at most 12MB.

5. Applications must embed any non-standard resources inside the SVG as needed. The

application can assume that the default SVG fonts (including Unicode/multi-byte) are
available on the kiosk. But, for example, barcode fonts used by the application must be
embedded inside the SVG.

6. Any embedded references inside the SVG data that link to external files such as image or

DTD files must be resolvable and accessible from the kiosk, for example either as
local/server files in the Storage component directory, or from an accessible application
web server URL. For example, in “<!DOCTYPE svg SYSTEM
'C:\APPS\Storage\ZZ\SVG\svg10.dtd' >” the .dtd file is readable from the kiosk.

6.4.2 Printing using Adobe PDF (Portable Document F ormat)

In CUSS 1.2, any kiosk that includes a General Purpose Printer (GPP) which supports SVG
printing must also support PDF printing. Or, speaking in terms of component Characteristics, if a
CUSS 1.2 platform provides a General Purpose Printer (GPP) that lists DataType::SVG in its
MediaOutput supportedDataTypes characteristic, then that MediaOutput component must also
support PDF printing. For more information on finding and using a GPP, please review Section
7.11. GPP printers must be at least 200dpi.

For backwards compatibility, the CUSS platform must indicate “DS_TYPES_PRINT_PDF” in
the firmwareVersion characteristic of its general purpose printer.

To properly print PDF documents, applications should follow these requirements. Compatibility
problems with PDF printing should be brought to the attention of the CUSS Technical Solution
Group for resolution.

1. Examine the maxPrintSizeX and maxPrintSizeY printer characteristics (in millimetres) to
create documents that will fix correctly on the page. If larger documents are sent to the
GPP the result may be scaled or truncated and not appear correctly. Platforms must
ensure that these characteristics values are accurate (not to 0mm.)

 Extended Device & Media Type Handling

Revision 1.3, June 2013 170

2. If the SVG print data refers to external resources (such as image files) provided by the
application, the SVG data stream must include the full path and filename of the resource.
Applications should use the path returned from the Storage component to detect where
the application root directory on the kiosk is.

3. Multiple-page PDF documents are allowed, with no limit on the total number of pages

sent. Applications should use the printer Bin characteristics to determine the capacity of
the printer.

4. PDF document size shall be limited to at most 12MB. Applications should use the inline

compression features of PDF to reduce stream size and overhead.

5. Applications must embed any non-standard resources inside the PDF as needed. The
application can assume that the default PDF fonts (including Unicode/multi-byte) are
available on the kiosk. But, for example, barcode fonts used by the application must be
embedded inside the PDF.

6. Applications cannot use or depend on any proprietary extensions to the PDF standard.

7. The application must send PDF print data to the send() and setup() commands. The

platform must parse the request data to determine if the data is SVG or PDF and process
it accordingly.

If a platform detects that it cannot parse or print the PDF document, it will return
FORMAT_ERROR or other suitable code to reflect the error condition as a result of the send()
request.

6.4.3 Reverse/2-sided printing on GPPs

Some kiosks vendors may choose to include in their kiosks printer hardware that supports
impression on both sides of the paper. The platform can use this feature directly (for example, to
print advertising or information on the reverse of all kiosk documents, without any input from
the kiosk applications) and can also extend this capability to CUSS applications running on the
platform. If a platform/kiosk vendor provides this hardware capability to applications running on
the kiosk, the platforms should offer and applications can detect and use (if desired) 2-sided
printing on a CUSS kiosk using the following methodology.

The only data format available for 2-sided printing is PDF. Therefore, a platform can support 2-
sided printing only if it supports PDF printing as discussed in Section 6.4.2. All
recommendations for PDF printing apply to PDF documents provided for 2-sided printing.

1. Except where noted below, “TWOSIDED” must appear in the firmwareVersion of the
Manufacturer characteristics of the MediaOutput component of a printer which supports
2 sided printing.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 171

2. 2-sided printers that are configured at the platform or hardware level to print specific

information on the back must not report the “TWOSIDED” characteristic. From an
application perspective, such hardware appears to be and behaves as a single-sided GPP.

3. A platform configured with a 2-sided printer hardware but operating as a normal single-

side GPP printer must not accept any 2-sided printing commands as listed below (ie an
application must not be able to interfere with any platform/hardware 2-sided operation if
2-sided printing is not advertised to the application.)

4. The reverse side of a 2-sided document shall be oriented by default such that when the

document is flipped along its vertical edge, the content on the reverse side is right-side-
up. In other words, side binding (like a book) is used by default, not top binding.

5. GPP support for back-side printing a single page is indicated by the presence of

DS_TYPES_PRINT_2S_PAGE.

a. setup() is used to send the data to print on the back side using svgDataType[]
b. setup() accepts a datastream with a PDF document to print on the back side of the

document.
c. The datastream input will be prefixed with ~~2S_PAGE~~ to indicate that the

PDF data is to be printed on the back side.
d. The PDF document specified remains in the context for all subsequent print

requests from that application until it is replaced with another PDF document or
cleared

e. To clear the PDF document, the datastream input will be ~~2S_PAGE~~ with no
data after the text.

f. The PDF document specified for the back side must be a single page PDF. If a
multi page PDF is provided as part of the setup() call, then the platform shall
return FORMAT_ERROR.

g. If a platform detects that it cannot parse or print the PDF document, it will return
FORMAT_ERROR or other suitable code to reflect the error condition as a result
of the setup() request.

h. ~~2S_PAGE~~ printing is cleared when the printer is released. Back-side
documents set by an application must only print for print requests from that
application (the back-side printing information is part of the platform’s
application context and must not persist to other applications.)

6. GPP support for front-back printing of multi-page documents is indicated by the presence

of DS_TYPES_PRINT_2S_MULTI.

a. setup() is called to request 2-sided printing of a sequence of pages using
svgDataType[]

b. datastream is ~~2S_MULTI_ON~~
c. ~~2S_MULTI_ON~~ is mutually exclusive with ~~2S_PAGE~~. That is, each

request implicitly cancels the other.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 172

d. Multi-page front-back printing is supported through the use of multi-page PDF
documents. Each new document starts on the next front page. That is, it is not
possible to send subsequent single-page PDF documents using
~~2S_MULTI_ON~~ and have every other PDF document print on the back. If
such functionality is required, it is preferred to use ~~2S_PAGE~~ as described
above.

e. datastream to return to single-sided printing is ~~2S_MULTI_OFF~~
f. If an application prints multi-page PDF (Section 6.4.2) without specifying

~~2S_MULTI_ON~~, then the platform prints normal 1-sided documents.

6.4.4 Page margins and printable area

If a kiosk platform uses a General Purpose Printer which has a physical printable area that is
smaller than the logical print area, it must advise the application of this limitation. An example of
this would be where the printer or platform chops/truncates print data sent to the far (0,0) corner
because of a printer hardware or platform software limitation.

Ideally, the entire print data is properly printed on GPPs with no truncation. If this is not
possible, however, the platform must implement the following behaviour.

1. The maxPrintSizeX and maxPrintSizeY characteristic values must be properly set by the
platform, in millimetre (see Section 5.10.)

2. The Manufacturer::firmwareVersion characteristic of the GPP MediaOutput must include

the “originPointX=<value>” field if the printer truncates data horizontally (the left side of
the print data does not appear.) This value is in mm.

3. The Manufacturer::firmwareVersion characteristic of the GPP MediaOutput must include

the “originPointY=<value>” field if the printer truncates data vertically (the top of the
print data does not appear.) This value is in mm.

4. These settings apply to GPP printing with SVG, PDF, or 2-sided PDF.

5. All standard AEA printing MUST print properly on any platform/kiosk printer that

indicates support for AEA, without truncation. Ie, any platform printer component that
supports aeaDataType must print valid AEA request without truncation and in
accordance with the ATB document specification, even if it via GPP printer.

The applications can use these setting to adjust and position their SVG or PDF print data to print
correctly on the kiosk.

6.4.5 Receipt Printing and Specialty Document Print ing

 Extended Device & Media Type Handling

Revision 1.3, June 2013 173

Many kiosks applications may need to print documents other than ATB-format boarding
documents. This can include itineraries, payment or baggage receipts, or other specialty items
such as Heavy Tags for self baggage drop kiosks.

In all cases, recall that a CUSS is only required to offer an ATB boarding pass printer supporting
the AEA language. All other types of printers are optional. So a well-written application should
be able to detect and cope with a situation where a kiosk does not include the exact type of
printer it needs.

For example, an application should not require GPP printing support (for receipts or any other
document) and expect to operate on all CUSS kiosks worldwide, as there are numerous kiosks
that cannot or choose not to implement GPP printing.

As a general rule, CUSS applications should probably follow an approach such as this to detect
and use the correct printer(s) it needs.

1. Examing the CUSS component list and identify all AEA and GPP printers available to
the application.

2. Review the characteristics of each printer to classify their capabilities:
a. Is it AEA, or GPP with SVG/PDF support?
b. What size document does it support (see 6.4.4)
c. Is the document Portrait or Landscape
d. Does the Manufacturer.firmwareVersion characteristic indicate any special printer

media support, such as DS_TYPES_HEAVYTAG?

3. Acquire and use the printers that are most appropriate for the capabilities that exist in the
application.

4. If an expected printer is not found, either set the application to the UNAVAILABLE
state, or revert if possible to an alternate printing logic that produces documents using the
mandatory AEA boarding pass printer component on the kiosk instead of the GPP.

Also note that in many cases, printing of specialty documents such as Receipts or Heavy Tags,
may include specific document content and formatting requirements that are not specified by the
CUSS standard but are instead imposed by airport or other industry requirements. For example:

• Payment receipts may need to include specific data and formatting mandated by the
acquiring bank

• Heavy Tags may have a different stock type or size depending on the airport or country

Finally, note that in some cases, additional printing functionality might exist on specialty kiosks.
For example, self bag drop kiosks may offer receipt printing support via AEA-SBD protocol
commands in addition to a CUSS GPP printer interface.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 174

Ch 7: Real Device Programming Guide

This chapter is based on the CUSS 1.1 document “Clarification of IATA CUSS Real Device to Virtual
Component Mapping” with some formatting and layout changes.

This chapter is a programming reference that clarified the real device behavior when the devices are used on
the IATA CUSS v1.2 implementation. It documents the virtual component linkage and characteristics to allow a
CUSS application developer to better understand the mapping between a real device and a set of virtual
components and characteristics for that device.

To simplify the sequence diagrams, assume that all components are already acquired via the acquire() call and
release via release() will be called if the application is finished using / listening to the virtual components.

The sequence diagrams are not intended to show every possible scenario. They are illustrations of typical
usage cases, as well as some cases that may be harder to conceptualize. In theory, error scenarios (such as
device becoming not responsive) can occur at any time, independent of the operation being performed.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 175

7.1 List of Figures

Figure 1: Linking for Simple AEA printing device .. 176
Figure 2: Printing AEA Coupons ... 177
Figure 3: Linking for ATB Printer with insertion slot and multiple bins 178
Figure 4: Reading and printing AEA Coupons (no Escrow device attached) 181
Figure 5: Linking for ATB Printer with insertion slot, multiple bins and escrow 182
Figure 6: Reading and printing AEA Coupons (with Escrow device attached) 185
Figure 7: Linking for ATB Printer with insertion slot, multiple bins and escrow (inserted coupons do

not eject into escrow) .. 186
Figure 8: Linking for Simple Baggage Tag Printer .. 189
Figure 9: Printing Baggage Tags .. 190
Figure 10: Linking for Motorized Card Reader (with Capture) ... 191
Figure 11: Reading Magnetic Cards on a motorized reader .. 192
Figure 12: Linking for DIP / Swipe Card Reader ... 193
Figure 13: Reading Magnetic Cards on a DIP reader .. 194
Figure 14: Reading Magnetic Cards on a SWIPE reader ... 194
Figure 15: Linking for Motorized Magnetic Card Encoder (with Capture) 195
Figure 16: Linking for Motorized Magnetic Card Encoder (with Dispenser) 197
Figure 17: Linking for Simple GPP ... 199
Figure 18: Reading Magnetic Cards on a SWIPE reader ... 200
Figure 19: Linking for DIP / Swipe / Flatbed Passport Reader .. 201
Figure 20: Reading Passports on a DIP or SWIPE reader ... 202
Figure 21: Linking for Barcode Reader ... 203
Figure 22: Reading bar-codes ... 204
Figure 23: Linking for Flatbed Reader ... 205
Figure 24: Linking for RadioRFID Reader .. 209

 Extended Device & Media Type Handling

Revision 1.3, June 2013 176

7.2 Simple ATB Printer (AEA Printing Device)

Description of Device:

The Simple ATB Printer is a simple AEA printing device without magnetic encoding capability and no insertion
slot to read / revalidate coupons. It does not have an escrow device and once the coupons are printed, they
are presented to the end user automatically.

Virtual Component Linking Diagram:

Figure 1: Linking for Simple AEA printing device

Description of Virtual Component Linkage:
A MediaOutput component is linked to a Feeder and a virtual Dispenser

Distinct Characteristics:

MediaOutput (Stock 1 Printer)
Characteristic Value
MediaType.MediaTypeListDef MediaType.MediaTypeDef.Printed
MediaOutput.MediaType.type MediaOutput.MediaType.BoardingPass

MediaOutput.MediaType.Ticket
MediaOutput.MediaType.GeneralPurposeDoc

MediaOutput.supportedDataTypes DataType.AEA

Dispenser (Stock 1 Printer)
Characteristic Value
Dispenser.kind Dispenser.DispenserType.virtual_

The dispenser is virtual because an offer() is not required.
This is because once printed, the media is available to the
end user.

If offer() is called the platform will generate the response with
status code OK so that application knows that the platform
does not have a physical sensor in the dispenser component.

If offer() is called against the virtual dispenser, the offer()
must block until the tickets are removed if the platform
supports the ability to detect removal of coupons.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 177

Typical Sequence Diagram for AEA Printing Device fo r Printing:

Figure 2: Printing AEA Coupons

 Extended Device & Media Type Handling

Revision 1.3, June 2013 178

7.3 ATB/2 with Insertion Slot

Description of Device:

The ATB/2 with Insertion Slot Printer has magnetic encoding capability and the ability to read / revalidate
coupons inserted by the end user. It does not have an escrow device and once the coupons are printed, they
are presented to the end user automatically. In this example, coupons inserted into insertion slot that become
revalidated or ejected are sent to the main coupon tray. The printer may have a number of bins.

Virtual Component Linking Diagram:

Figure 3: Linking for ATB Printer with insertion slot and multiple bins

Description of Virtual Component Linkage:
There is a MediaOutput component defined for each Feeder. Each MediaOutput component can have the
same media type, or a different media type, depending on configuration. There is also a MediaOutput and a
MediaInput component associated with the Insertion Slot. The MediaOutput of the Insertion Slot and the
MediaOutput of the Feeder components are linked to a virtual dispenser. Since there is no escrow, media that
is printed can be retrieved directly by the end user. The MediaInput of the Insertion Slot is linked to a real
Dispenser since offer() is required for the end user to retrieve coupons that are inserted but not revalidated.
The real Dispenser can be linked to the virtual Dispenser if coupons that are ejected exit the printer via the
main tray.

Distinct Characteristics:

 Extended Device & Media Type Handling

Revision 1.3, June 2013 179

MediaOutput (Stock 1, 2, … , n Printer)
Characteristic Value
MediaType.MediaTypeListDef MediaType.MediaTypeDef.Printed

MediaType.MediaTypeDef.MagneticStripe
MediaOutput.MediaType.type MediaOutput.MediaType.BoardingPass

MediaOutput.MediaType.Ticket
MediaOutput.MediaType.GeneralPurposeDoc

MediaOutput.supportedDataTypes DataType.AEA
MediaOutput.numberOfTracks 1

MediaOutput (Slot Printer)
Characteristic Value
MediaType.MediaTypeListDef MediaType.MediaTypeDef.Printed

MediaType.MediaTypeDef.MagneticStripe
MediaOutput.MediaType.type MediaOutput.MediaType.InsertedDoc
MediaOutput.supportedDataTypes DataType.AEA
MediaOutput.numberOfTracks 1

In AEA, the data is encoded on 4 tracks but the track number
is hidden from the application.

MediaInput (Slot Printer)
Characteristic Value
MediaType.MediaTypeListDef MediaType.MediaTypeDef.Printed

MediaType.MediaTypeDef.MagneticStripe
MediaInput.typeOfReader MediaInput.ReaderType.Motorized
MediaOutput.supportedDataTypes DataType.AEA

Dispenser (Main Tray)
Characteristic Value
Dispenser.kind Dispenser.DispenserType.virtual_

The dispenser is virtual because an offer() is not required.
This is because once printed, the media is available to the
end user.

If offer() is called the platform will generate the response with
status code OK so that application knows that the platform
does not have a physical sensor in the dispenser component.

If offer() is called against the virtual dispenser, the offer()
must block until the tickets are removed if the platform
supports the ability to detect removal of coupons.

Dispenser (Insertion Slot)
Characteristic Value
Dispenser.kind Dispenser.DispenserType.real_

The dispenser is real because an offer() is required to eject
the inserted coupon. This is because once inserted, the
media is only available to the end user after it has been
ejected.

In this example, the dispenser of the insertion slot is linked to
the virtual dispenser of the main tray because in this example
it is assumed that coupons eject from the main tray instead of
the insertion slot.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 180

** In CUSS 2.0, this dispenser will be a Feeder virtual
component. Further definition is required to determine the
characteristics of this new feeder virtual component **

Capture
Characteristic Value
Bin.BinSize Maximum number of documents a bin can hold
Bin.AlmostFullLevel Shows the high threshold of the bin if corresponding sensor

is installed. May generate a MEDIA_HIGH event.
Bin.currentNoOfDocuments Shows the current number of documents in the bin

 Extended Device & Media Type Handling

Revision 1.3, June 2013 181

Typical Sequence Diagram for ATB/2 with Insertion S lot (No Escrow):

Figure 4: Reading and printing AEA Coupons (no Escrow device attached)

 Extended Device & Media Type Handling

Revision 1.3, June 2013 182

7.4 ATB/2 with Insertion Slot and Escrow

Description of Device:

The ATB/2 with Insertion Slot Printer has magnetic encoding capability and the ability to read / revalidate
coupons inserted by the end user. It has an escrow – a device to hold tickets after they are printed or ejected
but before they are offered to the user. If there is a problem during printing of some coupons, the capture
virtual component connected to the escrow represented as a dispenser can be used to retain the current
contents inside the escrow. In this example, coupons inserted into insertion slot that become revalidated or
ejected are sent to the main coupon tray. The printer may have a number of bins. There are two Capture
virtual components – the Capture component associated with the MediaInput can be used to capture inserted
coupons, while the Capture component associated with the escrow can be used to capture that is currently
inside the escrow device.

Virtual Component Linking Diagram:

Figure 5: Linking for ATB Printer with insertion slot, multiple bins and escrow

Description of Virtual Component Linkage:

There is a MediaOutput component defined for each Feeder. Each MediaOutput component can have the
same media type, or a different media type, depending on configuration. There is also a MediaOutput and a
MediaInput component associated with the Insertion Slot. The MediaOutput of the Insertion Slot and the
MediaOutput of the Feeder components are linked to an escrow device, defined as a real dispenser. Since
there is an escrow, media that is printed can be retrieved by the end user after an offer() call from the real

 Extended Device & Media Type Handling

Revision 1.3, June 2013 183

dispenser. The MediaInput of the Insertion Slot is linked to a real Dispenser since offer() is required for the
end user to retrieve coupons that are inserted but not revalidated. The real Dispenser of the insertion slot is
linked to the real Dispenser represented by the escrow if coupons that are ejected exit the printer via the
escrow. A capture virtual component can be linked to the escrow device if the escrow has the capability to
capture coupons. Revalidated tickets from the insertion slot will travel into the escrow.

Distinct Characteristics:

MediaOutput (Stock 1, 2, … , n Printer)
Characteristic Value
MediaType.MediaTypeListDef MediaType.MediaTypeDef.Printed

MediaType.MediaTypeDef.MagneticStripe
MediaOutput.MediaType.type MediaOutput.MediaType.BoardingPass

MediaOutput.MediaType.Ticket
MediaOutput.MediaType.GeneralPurposeDoc

MediaOutput.supportedDataTypes DataType.AEA
MediaOutput.numberOfTracks 1

MediaOutput (Slot Printer)
Characteristic Value
MediaType.MediaTypeListDef MediaType.MediaTypeDef.Printed

MediaType.MediaTypeDef.MagneticStripe
MediaOutput.MediaType.type MediaOutput.MediaType.InsertedDoc
MediaOutput.supportedDataTypes DataType.AEA
MediaOutput.numberOfTracks 1

In AEA, the data is encoded on 4 tracks but the track number
is hidden from the application.

MediaInput (Slot Printer)
Characteristic Value
MediaType.MediaTypeListDef MediaType.MediaTypeDef.Printed

MediaType.MediaTypeDef.MagneticStripe
MediaInput.typeOfReader MediaInput.ReaderType.Motorized
MediaOutput.supportedDataTypes DataType.AEA

Dispenser (Escrow)
Characteristic Value
Dispenser.kind Dispenser.DispenserType.real_

The dispenser is real because an offer() required in order for
the end user to access media. This is because once printed,
the media is inside the escrow device.

If offer() is called against the real dispenser representing the
escrow, the offer() will block until the tickets are removed
from the escrow

Dispenser (Insertion Slot)
Characteristic Value
Dispenser.kind Dispenser.DispenserType.real_

The dispenser is real because an offer() is required to eject
the inserted coupon. This is because once inserted, the
media is only available to the end user after it has been
ejected.

In this example, the dispenser of the insertion slot is linked to

 Extended Device & Media Type Handling

Revision 1.3, June 2013 184

the real dispenser of the escrow because in this example it is
assumed that coupons eject into the escrow instead of the
insertion slot.

** In CUSS 2.0, this dispenser will be a Feeder virtual
component. Further definition is required to determine the
characteristics of this new feeder virtual component **

Capture
Characteristic Value
Bin.BinSize Maximum number of documents a bin can hold
Bin.AlmostFullLevel Shows the high threshold of the bin if corresponding sensor

is installed. May generate a MEDIA_HIGH event.
Bin.currentNoOfDocuments Shows the current number of documents in the bin

 Extended Device & Media Type Handling

Revision 1.3, June 2013 185

Typical Sequence Diagrams for ATB/2 with Insertion Slot and Escrow:

Figure 6: Reading and printing AEA Coupons (with Escrow device attached)

 Extended Device & Media Type Handling

Revision 1.3, June 2013 186

7.5 ATB/2 with Insertion Slot and Escrow (ins. coup ons do not eject into
escrow)

Description of Device:

The ATB/2 with Insertion Slot Printer has magnetic encoding capability and the ability to read / revalidate
coupons inserted by the end user. It has an escrow device to hold tickets after they are printed. However, in
this example, coupons inserted into insertion slot that become revalidated is directed to the escrow, while
tickets that are not revalidated are ejected out of the insertion slot instead of ejecting into the escrow. The
printer may have a number of bins.

Virtual Component Linking Diagram:

Figure 7: Linking for ATB Printer with insertion slot, multiple bins and escrow (inserted coupons do not eject
into escrow)

Description of Virtual Component Linkage:

There is a MediaOutput component defined for each Feeder. Each MediaOutput component can have the
same media type, or a different media type, depending on configuration. There is also a MediaOutput and a
MediaInput component associated with the Insertion Slot. The MediaOutput of the Insertion Slot and the
MediaOutput of the Feeder components are linked to separate real dispensers, one representing the escrow
and the other representing the insertion slot. Since there is an escrow, media that is printed can be retrieved

 Extended Device & Media Type Handling

Revision 1.3, June 2013 187

by the end user after an offer() call from the real dispenser. The MediaInput of the Insertion Slot is linked to a
real Dispenser since offer() is required for the end user to retrieve coupons that are inserted but not
revalidated. The real Dispenser of the insertion slot is not directly linked to the real Dispenser represented by
the escrow because coupons inserted from the insertion slot are not always ejected into the escrow (for
example, inserted ticket that is not revalidated). A capture virtual component can be linked to the escrow
device if the escrow has the capability to capture coupons. Revalidated tickets from the insertion slot will travel
into the escrow after calling send() from the MediaOutput virtual component.

Distinct Characteristics:
MediaOutput (Stock 1, 2, … , n Printer)
Characteristic Value
MediaType.MediaTypeListDef MediaType.MediaTypeDef.Printed

MediaType.MediaTypeDef.MagneticStripe
MediaOutput.MediaType.type MediaOutput.MediaType.BoardingPass

MediaOutput.MediaType.Ticket
MediaOutput.MediaType.GeneralPurposeDoc

MediaOutput.supportedDataTypes DataType.AEA
MediaOutput.numberOfTracks 1

MediaOutput (Slot Printer)
Characteristic Value
MediaType.MediaTypeListDef MediaType.MediaTypeDef.Printed

MediaType.MediaTypeDef.MagneticStripe
MediaOutput.MediaType.type MediaOutput.MediaType.InsertedDoc
MediaOutput.supportedDataTypes DataType.AEA
MediaOutput.numberOfTracks 1

In AEA, the data is encoded on 4 tracks but the track number
is hidden from the application.

MediaInput (Slot Printer)
Characteristic Value
MediaType.MediaTypeListDef MediaType.MediaTypeDef.Printed

MediaType.MediaTypeDef.MagneticStripe
MediaInput.typeOfReader MediaInput.ReaderType.Motorized
MediaOutput.supportedDataTypes DataType.AEA

Dispenser (Escrow)
Characteristic Value
Dispenser.kind Dispenser.DispenserType.real_

The dispenser is real because an offer() required in order for
the end user to access media. This is because once printed,
the media is inside the escrow device.

If offer() is called against the real dispenser representing the
escrow, the offer() will block until the tickets are removed
from the escrow

Dispenser (Insertion Slot)
Characteristic Value
Dispenser.kind Dispenser.DispenserType.real_

The dispenser is real because an offer() is required to eject
the inserted coupon. This is because once inserted, the
media is only available to the end user after it has been

 Extended Device & Media Type Handling

Revision 1.3, June 2013 188

ejected into the escrow instead of the insertion slot.

** In CUSS 2.0, this dispenser will be a Feeder virtual
component. Further definition is required to determine the
characteristics of this new feeder virtual component **

Capture
Characteristic Value
Bin.BinSize Maximum number of documents a bin can hold
Bin.AlmostFullLevel Shows the high threshold of the bin if corresponding sensor

is installed. May generate a MEDIA_HIGH event.
Bin.currentNoOfDocuments Shows the current number of documents in the bin

 Extended Device & Media Type Handling

Revision 1.3, June 2013 189

7.6 Simple Baggage Tag Printer

Description of Device:

The Baggage Tag printer prints baggage tags according to the BTP AEA specification. In this simple Baggage
Tag printer example, the baggage tag is available to the user once it is printed. The baggage tags used should
be those with dimensions as stated in the Appendix.

A CUSS kiosk bag tag printer may or may not be able to detect when the kiosk user has taken a bag tag after it
is printer. If this capability does exists, a CUSS platform provider may (but is not obliged) to present this
capability to CUSS applications by implementing a Dispenser component of type “real”.

It is a CUSS application business logic decision to properly detect and use both types of Dispenser component
in accordance their the airline’s internal bag tag printing and/or security requirements.

Virtual Component Linking Diagram:

Figure 8: Linking for Simple Baggage Tag Printer

Description of Virtual Component Linkage:

A MediaOutput component is linked to a Feeder and a Dispenser. If the platform monitors if and when bag tags
are taken by the user, or there is a physical bag tag output bin, then the Dispenser will be real. Otherwise it is a
virtual dispenser.

Distinct Characteristics:

MediaOutput (Stock 1 Printer)
Characteristic Value
MediaType.MediaTypeListDef MediaType.MediaTypeDef.Printed
MediaOutput.MediaType.type MediaOutput.MediaType.BaggageTag
MediaOutput.supportedDataTypes DataType.AEA

Dispenser (Stock 1 Printer)
Characteristic Value
Dispenser.kind Dispenser.DispenserType.virtual_

If the dispenser is virtual, the platform does not detect when
and if a document is taken from the bag tag printer. In this
case, an offer() is not required. This is because once printed,
the media is available to the end user.

If offer() is called against the virtual dispenser, the offer() may
block until the tickets are removed if the platform supports
the ability to detect removal of baggage tags, even if the
Dispenser is type virtual_

 Extended Device & Media Type Handling

Revision 1.3, June 2013 190

Dispenser.DispenserType.real_

If the dispenser is real, the platform can detect and/or control
when the printed document is taken from the bag tag output
position. In this case, an offer() is required to make the
document available to the end user.

Typically, the dispenser for the Baggage Tag printer may
only be able to hold a maximum of one baggage tag. As a
result, the query of the dispenser component, or
asynchronous events may indicate MEDIA_FULL instead of
MEDIA_PRESENT

The application can use Dispenser.BinSize characteristic to
programmatically determine the maximum size of the
dispenser bin. In addition, the Dispenser.
currentNoOfDocuments can show the number of documents
that are in the dispenser. Dispenser.currentNoOfDocuments
may not be supported by platforms lacking sensor capability.

Typical Sequence Diagram for Simple Baggage Tag Pri nter:

The sequence diagram is identical to the Simple AEA printing device. In some cases, the Dispenser virtual
component may only have a capacity of one. This is to ensure a baggage tag must be removed from the
dispenser prior to another being printed.

Figure 9: Printing Baggage Tags

 Extended Device & Media Type Handling

Revision 1.3, June 2013 191

7.7 Motorized Magnetic Card Reader

Description of Device:

The motorized magnetic card reader accepts and reads ISO magnetic encoded cards. There is a MediaInput
component linked to a real dispenser and a capture component.

Card data for payment cards is provided by the platform in accordance with Chapter 8 (formerly known as the
CUSS FOID Addendum.)

Virtual Component Linking Diagram:

Figure 10: Linking for Motorized Card Reader (with Capture)

Description of Virtual Component Linkage:

The MediaInput virtual component is linked to a real dispenser as the end user can only retrieve an inserted
card after the offer() directive is called. The MediaInput virtual component can also be linked to a capture
virtual component, used to retain inserted cards.

Distinct Characteristics:

MediaInput
Characteristic Value
MediaType.MediaTypeListDef MediaType.MediaTypeDef.MagneticStripe
MediaInput.typeOfReader MediaInput.ReaderType.Motorized
MediaInput.supportedDataTypes DataType.MSG
MediaInput.numberOfTracks <int>, depends on the actual number of tracks the hardware

is capable of reading. Typically, this number is 2 or 3 for ISO
readers

Manufacturer.FirmwareVersion <string> - indication of the supported data type, such as:
DS_TYPES_FOID_ISO, DS_TYPES_PAYMENT_ISO,
DS_TYPES_DISCRETIONARY_ISO.

See Chapter 8 for how to use these data types.

Dispenser
Characteristic Value
Dispenser.kind Dispenser.DispenserType.real_

The dispenser is real because an offer() is required for the
end user to retrieve the card.

Capture
Characteristic Value
Bin.BinSize Maximum number of documents a bin can hold

 Extended Device & Media Type Handling

Revision 1.3, June 2013 192

Bin.AlmostFullLevel Shows the high threshold of the bin if corresponding sensor
is installed. May generate a MEDIA_HIGH event.

Bin.currentNoOfDocuments Shows the current number of documents in the bin

Supported extended data types:

By default, the CUSS card reader interfaces will only provide truncated track data to the application when the
customer inserts a payment card. If an application requires full and legitimate access to the payment card
information, if must call setup() to configure that access.

Please see the next section 7.8 and Chapter 8 for more information on extended data types and payment card
data truncation, as well as a sequence diagram for this usage.

Typical Sequence Diagrams for Motorized Magnetic Ca rd Reader:

Figure 11: Reading Magnetic Cards on a motorized reader

 Extended Device & Media Type Handling

Revision 1.3, June 2013 193

7.8 DIP / Swipe Magnetic Card Reader

Description of Device:

The DIP / Swipe magnetic card reader accepts and reads ISO magnetic encoded cards. There is a single
MediaInput component representing the DIP / Swipe Reader.

Card data for payment cards is provided by the platform in accordance with Chapter 8 (formerly known as the
CUSS FOID Addendum.)

Virtual Component Linking Diagram:

Figure 12: Linking for DIP / Swipe Card Reader

Description of Virtual Component Linkage:

A single MediaInput virtual component, configured as either a Swipe or DIP type of reader.

Distinct Characteristics:

MediaInput:
Characteristic Value
MediaType.MediaTypeListDef MediaType.MediaTypeDef.MagneticStripe
MediaInput.typeOfReader MediaInput.ReaderType.DIP

MediaInput.ReaderType.Swipe
MediaInput.supportedDataTypes DataType.MSG
MediaInput.numberOfTracks <int>, depends on the actual number of tracks the hardware

is capable of reading. Typically, this number is 2 or 3 for ISO
readers

Manufacturer.FirmwareVersion <string> - indication of the supported data type, such as:
DS_TYPES_FOID_ISO, DS_TYPES_PAYMENT_ISO,
DS_TYPES_DISCRETIONARY_ISO.

See Chapter 8 for how to use these data types.

Supported extended data types:

By default, the CUSS card reader interfaces will only provide truncated track data to the application when the
customer inserts a payment card. If an application requires full and legitimate access to the payment card
information, if must call setup() to configure that access.

Please see the next section 7.8 and Chapter 8 for more information on extended data types and payment card
data truncation, as well as a sequence diagram for this usage.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 194

Typical Sequence Diagrams for DIP / SWIPE Magnetic Card Reader:

Figure 13: Reading Magnetic Cards on a DIP reader

Figure 14: Reading Magnetic Cards on a SWIPE reader

 Extended Device & Media Type Handling

Revision 1.3, June 2013 195

7.9 Magnetic Card Encoder

Description of Device:

The motorized magnetic card encoder and reads and encodes magnetic cards that are inserted into the
reader. There is a MediaInput and MediaOutput component linked to a real dispenser and a capture
component. Depending on the actual hardware, the card encoder may support a number of different encoding
formats / specifications. Each data type that can be read is represented by a MediaInput with the
corresponding extended data type, and each data type that can be written is represented with a MediaOutput
with the corresponding extended data type.

Virtual Component Linking Diagram:

Figure 15: Linking for Motorized Magnetic Card Encoder (with Capture)

Description of Virtual Component Linkage:

The MediaInput and MediaOutput virtual components are linked to a real dispenser as the end user can only
retrieve an inserted card after the offer() directive is called. The MediaInput and MediaOutput virtual
components can also be linked to a capture virtual component, used to retain inserted cards. For devices that
support capturing cards that are in the dispenser, the Dispenser virtual component can be linked to the
Capture virtual component.

Distinct Characteristics:

MediaInput
Characteristic Value
MediaType.MediaTypeListDef MediaType.MediaTypeDef.MagneticStripe
MediaInput.typeOfReader MediaInput.ReaderType.Motorized
MediaInput.supportedDataTypes DataType.MSG
MediaInput.numberOfTracks <int>, depends on the actual number of tracks the hardware

is capable of reading. Typically, this number is 2 or 3 for ISO
readers

Manufacturer.firmwareVersion Identifies the extended data types supported, based on
CUSS Addendum A.1.34

MediaOutput
Characteristic Value
MediaOutput.type MediaOutput.MediaType.Card
MediaType.MediaTypeListDef MediaType.MediaTypeDef.MagneticStripe
MediaOutput.typeOfReader MediaInput.ReaderType.Motorized

 Extended Device & Media Type Handling

Revision 1.3, June 2013 196

MediaOutput.supportedDataTypes DataType.MSG
MediaOutput.numberOfTracks <int>, depends on the actual number of tracks the hardware

is capable of writing. Typically, this number is 2 or 3 for ISO
writers

Manufacturer.firmwareVersion Identifies the extended data types supported, based on
CUSS Addendum A.1.34

Dispenser:
Characteristic Value
Dispenser.kind Dispenser.DispenserType.real_

The dispenser is real because an offer() is required for the
end user to retrieve the card.

Capture
Characteristic Value
Bin.BinSize Maximum number of documents a bin can hold
Bin.AlmostFullLevel Shows the high threshold of the bin if corresponding sensor

is installed. May generate a MEDIA_HIGH event.
Bin.currentNoOfDocuments Shows the current number of documents in the bin

 Extended Device & Media Type Handling

Revision 1.3, June 2013 197

7.10 Magnetic Card Encoder with Dispenser

Description of Device:

The motorized magnetic card encoder with dispenser reads and encodes magnetic cards that are inserted into
the reader. There is a MediaInput and MediaOutput component linked to a real dispenser and a capture
component. Depending on the actual hardware, the card encoder may support a number of different encoding
formats / specifications. Each data type that can be read is represented by a MediaInput with the
corresponding extended data type, and each data type that can be written is represented with a MediaOutput
with the corresponding extended data type. The dispensers hold cards that can be encoded and offered to the
user, similar to the way ATB printers can print coupons from its bins. For devices that support capturing cards
that are in the dispenser, the Dispenser virtual component can be linked to the Capture virtual component.

Figure 16: Linking for Motorized Magnetic Card Encoder (with Dispenser)

 Extended Device & Media Type Handling

Revision 1.3, June 2013 198

Description of Virtual Component Linkage:

The MediaInput and MediaOutput virtual components are linked to a real dispenser as the end user can only
retrieve an inserted card after the offer() directive is called. The MediaInput and MediaOutput virtual
components can also be linked to a capture virtual component, used to retain inserted cards. There is a
MediaOutput component defined for each Feeder.

Distinct Characteristics:

MediaInput (Magnetic Stripe Reader)
Characteristic Value
MediaType.MediaTypeListDef MediaType.MediaTypeDef.MagneticStripe
MediaInput.typeOfReader MediaInput.ReaderType.Motorized
MediaInput.supportedDataTypes DataType.MSG
MediaInput.numberOfTracks <int>, depends on the actual number of tracks the hardware

is capable of reading. Typically, this number is 2 or 3 for ISO
readers

Manufacturer.firmwareVersion Identifies the extended data types supported, based on
CUSS Addendum A.1.34

MediaOutput (Magnetic Stripe Reader and Card Type 1 .. n)
Characteristic Value
MediaOutput.type MediaOutput.MediaType.Card
MediaType.MediaTypeListDef MediaType.MediaTypeDef.MagneticStripe
MediaOutput.typeOfReader MediaInput.ReaderType.Motorized
MediaOutput.supportedDataTypes DataType.MSG
MediaOutput.numberOfTracks <int>, depends on the actual number of tracks the hardware

is capable of writing. Typically, this number is 2 or 3 for ISO
readers

Manufacturer.firmwareVersion Identifies the extended data types supported, based on
CUSS Addendum A.1.34

Dispenser
Characteristic Value
Dispenser.kind Dispenser.DispenserType.real_

The dispenser is real because an offer() is required for the
end user to retrieve the card.

Capture
Characteristic Value
Bin.BinSize Maximum number of documents a bin can hold
Bin.AlmostFullLevel Shows the high threshold of the bin if corresponding sensor

is installed. May generate a MEDIA_HIGH event.
Bin.currentNoOfDocuments Shows the current number of documents in the bin

 Extended Device & Media Type Handling

Revision 1.3, June 2013 199

7.11 General Purpose Printer (GPP)

Description of Device:

The Simple General Purpose Printer (GPP) is a device that can print media based on the SVG format. It does
not have an escrow device and once the coupons are printed, they are presented to the end user
automatically. A platform provider can also choose to use the same set of virtual components to print both
AEA and SVG data, represented by the supported data types in the virtual component characteristics. Another
platform provider may choose to use a completely different set of virtual components to represent SVG and
AEA data even if both sets of virtual components represent the same physical printer.

Important Notice: depending on its capabilities, a CUSS kiosk may not include a GPP printer, it may
include a single GPP interface, or may include two or more GPP printers for additional specialty
functions such as Receipt printing or Heavy Tag printing (for Self Bag Drop devices.)

Virtual Component Linking Diagram:

Figure 17: Linking for GPP

Description of Virtual Component Linkage:
A MediaOutput component is linked to a Feeder and a virtual Dispenser

Distinct Characteristics:

MediaOutput (Stock 1 Printer)
Characteristic Value
MediaType.MediaTypeListDef MediaType.MediaTypeDef.Printed
MediaOutput.MediaType.type MediaOutput.MediaType.GeneralPurposeDoc
MediaOutput.supportedDataTypes DataType.SVG

DataType.AEA (if the virtual components supports both AEA
and SVG data)

Dispenser (Stock 1 Printer)
Characteristic Value
Dispenser.kind Dispenser.DispenserType.virtual_

The dispenser is virtual because an offer() is not required.
This is because once printed, the media is available to the
end user.

If offer() is called the platform will generate the response with
status code OK so that application knows that the platform
does not have a physical sensor in the dispenser component.

If offer() is called against the virtual dispenser, the offer()
must block until the tickets are removed if the platform
supports the ability to detect removal of coupons.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 200

MediaOutput.maxPrintSizeX
MediaOutput.maxPrintSizeY

The width and height of the document in millimeters, used to
distinguish multiple printers supporting different size paper.

MediaOutput.PrintOrientation Indicates with the document is portrait (X narrower than
height Y) or landscape (X wider than height Y)

MediaOutput.Manufacturer.firmwareVersion May contain additional indications about the specialty nature
of the documents printed by this GPP (for example, Heavy
Tag adhesize stock for a self bag drop device)

Typical Sequence Diagram for GPP:

Figure 18: Reading Magnetic Cards on a SWIPE reader

 Extended Device & Media Type Handling

Revision 1.3, June 2013 201

7.12 DIP / Swipe Passport Reader

Description of Device:

The DIP / Swipe passport reader accepts and reads passports with OCR data. There is a single MediaInput
component representing the DIP / Swipe Reader.

Virtual Component Linking Diagram:

Figure 19: Linking for DIP / Swipe / Flatbed Passport Reader

Description of Virtual Component Linkage:

A single MediaInput virtual component, configured as either a Swipe / DIP type of reader.

Distinct Characteristics:

MediaInput
Characteristic Value
MediaType.MediaTypeListDef MediaType.MediaTypeDef.Printed
MediaInput.typeOfReader MediaInput.ReaderType.DIP

MediaInput.ReaderType.Swipe
MediaInput.supportedDataTypes DataType.MSG
MediaInput.numberOfTracks <int>, depends on the actual number of OCR tracks
ComponentFonts.usedStandard ComponentFonts.BarcodeStandard.nonApplicableBarcodeTypes

 Extended Device & Media Type Handling

Revision 1.3, June 2013 202

Typical Sequence Diagram for Passport Reader:

Figure 20: Reading Passports on a DIP or SWIPE reader

 Extended Device & Media Type Handling

Revision 1.3, June 2013 203

7.13 Barcode Scanner

Description of Device:

The barcode reader reads barcodes encoded using supported barcode technologies. There is a single
MediaInput component representing the barcode scanner. OCR data is recorded in the data records within the
MSG Data Type. If the barcode scanner supports multiple barcodes, the individual OCR data is stored in
different data records within the MSG Data Type.

Virtual Component Linking Diagram:

Figure 21: Linking for Barcode Reader

Description of Virtual Component Linkage:

A single MediaInput virtual component, configured as a one of the valid reader types

Distinct Characteristics:

MediaInput
Characteristic Value
MediaType.MediaTypeListDef MediaType.MediaTypeDef.Printed
MediaInput.typeOfReader MediaInput.ReaderType.PenScan

MediaInput.ReaderType.Contactless
MediaInput.ReaderType.Swipe
MediaInput.ReaderType.FlatbedScan

MediaInput.supportedDataTypes DataType.MSG
ComponentFonts.usedStandard ComponentFonts.BarcodeStandard.Code39

ComponentFonts.BarcodeStandard.Code128
ComponentFonts.BarcodeStandard.Code2of5

The BarcodeStandard must be one of the above in order to
differentiate it from a passport reader.

Manufacturer.FirmwareVersion <string> should contain a list of supported barcodes, such as
PDF417, etc.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 204

Typical Sequence Diagram for Barcode Reader:

Figure 22: Reading bar-codes

 Extended Device & Media Type Handling

Revision 1.3, June 2013 205

7.14 Flatbed Reader

Description of Device:

The flatbed reader accepts and reads one or more of the following formats: OCR documents, barcode data,
and image data. Due to the realization that a single device can read so many different types of data, each type
of data that is supported by the device has its own MediaInput component associated with it. To differentiate
the different MediaInput components, the firmware version field will contain the data type being supported.
See the section ‘Identification of extended media types supported by component’ in the CUSS Addendum
document for more details.

Virtual Component Linking Diagram:

Figure 23: Linking for Flatbed Reader

Description of Virtual Component Linkage:

There is a single MediaInput virtual component for each configured valid data type that can be read by the
reader. The components are not linked and are distinct, and from the application’s perspective can be seen as
individual devices. For example, if the flatbed reader is capable of reading both OCR data and barcode, it will
appear to the application as a passport reader and a barcode reader. The characteristics will be identical,
except for the firmware version indicating the data type and possibly the barcode standard.

Distinct Characteristics:

MediaInput (for all data types)
Characteristic Value
MediaType.MediaTypeListDef MediaType.MediaTypeDef.Printed
MediaInput.typeOfReader MediaInput.ReaderType.FlatbedScan
MediaInput.supportedDataTypes DataType.MSG
ComponentFonts.usedStandard ComponentFonts.BarcodeStandard.nonApplicableBarcodeType

ComponentFonts.BarcodeStandard.Code39
ComponentFonts.BarcodeStandard.Code128
ComponentFonts.BarcodeStandard.Code2of5

Manufacturer.FirmwareVersion <string> - indication of the supported data type, such as:
DS_TYPES_CODELINE, DS_TYPES_BARCODE,

 Extended Device & Media Type Handling

Revision 1.3, June 2013 206

DS_TYPES_IMAGE_PHOTO, DS_TYPES_IMAGE_COAX,
DS_TYPES_IMAGE_UV, DS_TYPES_IMAGE_VIS,
DS_TYPES_IMAGE_IR, etc.

See the section ‘Identification of extended media types
supported by component’ in the CUSS Addendum document for
more details

 Extended Device & Media Type Handling

Revision 1.3, June 2013 207

7.15 RFID/NFC/Contactless Media Reader

Description of Device:

The RadioRFID reader accepts and reads Proximity Integrated Circuit Cards (PICCs) which conforms to one of
the following transport standards:

• ISO 10536
• ISO 14443
• ISO 15693
• ISO 18092

These PICCs communicate with these protocol standards:

• ISO 7816
• MIFARE

Due to the realization that a single device can read so different types of data, but only one at a time, the device
is implemented as on single MediaInput component supporting all types of data associated with it. Review
Chapter 6 and Appendix H for more information on identifying device components which support specific types
of data. Addition transport and protocol standards may be supported by other readers and cards. The same
concepts in this Section would apply to them in general terms as well.

Here is a description of the behaviour of these types of devices:

1. After card detection the virtual component1 platform will inform the active application with
MEDIA_PRESENT event. The MediaInput component will select the card using the appropriate
command(s) after card detection.

2. Answer To reset (ATS) will be signaled with DATA_PRESENT and can be read using the receive

directive.

3. In case multiple cards have been detected by the platform, the platform will send a
MEDIA_MISPLACED event. It’s up to the application to ask the user only to tap a single card at a time.
Anti-collision functionality has only to be supported in the sense of detecting the presence of multiple
cards.

4. Commands will be sent to the chip with the setup directive using an msgDataType. For performance

reasons, commands can be bundled. Each record of the msgDataType represents a single command.
The platform is responsible to process them sequentially, in the order they appear in the message
starting with records[0].message, records[1].message, etc.

5. Regardless of the communication mode (synchronous or asynchronous) the setup directive will not

return any data in the event data. If the setup directive is called in blocking mode, it will return after
either all commands have been executed or the timeout has expired.

6. Applications have to consider that the specified timeout for the setup directive defines the overall

timeout for all commands in the bundle.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 208

7. The presence of the result data from a previous setup directive call will be signaled with a
DATA_PRESENT event. The data can be read using the receive directive.

8. Then calling the setup directive asynchronously and the receive directive synchronously, it’s the

applications responsibility to select appropriate timeout values. If not the platform behavior is undefined.

Supported extended data type DS_TYPES_ISO7816:

C-APDUs (Command Application Protocol Data Unit) can be bundled. Each record of the msgDataType
represents a single C-APDU. R-APDU (Response Application Protocol Data Unit) will be sent to the application
under the same record number as the corresponding C-APDU. A dataRecord of the msgDataType has the
following structure:

// C-APDU
record[0].message[0..n] = C-APDU

// R-APDU
record[0].message[0..m] = R-APDU
// SW1 (Status Word 1)
record[0].message[m+1] = SW1
// SW2 (Status Word 2)
record[0].message[m+2] = SW2

Supported extended data type DS_TYPES_MIFARE:

The principle is the same as for ISO7816 compliant cards. PICC commands a data block or value block can be
mixed and bundled. Each dataRecord of the msgDataType represents a single PICC command. A record of
the msgDataType has the following structure:

// PICC Command:
// Authenticate using KeyA = 0x60
// Authenticate using KeyB = 0x61
// Read Data Block = 0x30
// Write Data Block = 0xA0
// Decrement Value Block = 0xC0
// Increment Value Block = 0xC1
// Restore Value Block = 0xC2
record[0].message [0] = PICC command

// Block number to use
record[0].message [1] = block number

// Key (48 bits) to use for Authenticate commands (0x60 & 0x61)
record[0].message [2..7] = Key to use

// Value to use for Value Block commands (0xC0, 0xC 1 & 0xC2)
record[0].message [2..5] = Value
record[0].message [6] = Transfer Address

 Extended Device & Media Type Handling

Revision 1.3, June 2013 209

// Value to use for Data Block commands (0xA0)
record[0].message [2..17] = data to use

Other commands will be implicitly handled by the platform. E.g. each value block operation will be followed by
a Transfer Value Block (0xB0) operation. Anti collision commands cannot be sent by the kiosk application.

Performance considerations:

The Dwell period of the platform must not be greater than 50ms. The dwell period is defined as the time
receiving the setup message until the response from the PICC has been processed and the DATA_PRESENT
event has been send to the calling CUSS application minus the processing time of the PICC.

Virtual Component Linking Diagram:

Figure 24: Linking for RadioRFID Reader

Description of Virtual Component Linkage:

There is a single MediaInput virtual component for all configured valid data type that can be read by the reader.

Distinct Characteristics:

MediaInput (for all data types)
Characteristic Value
MediaType.MediaTypeListDef MediaType.MediaTypeDef.Chip
MediaInput.typeOfReader MediaInput.ReaderType.Contactless
MediaInput.supportedDataTypes DataType.MSG
ComponentFonts.usedStandard
Manufacturer.FirmwareVersion <string> - indication of the supported data type, such as:

DS_TYPES_ISO7816, DS_TYPES_MIFARE
and <string> indication of the supported transport standards,
such as:
ISO10536, ISO14443, ISO15693, ISO18092 etc.

Typical Sequence Diagram for RadioRFID Reader:

 Extended Device & Media Type Handling

Revision 1.3, June 2013 210

 Extended Device & Media Type Handling

Revision 1.3, June 2013 211

7.16 Integrated Baggage System (Self Bag Drop AEA-S BD)

Important Note:

In CUSS 1.3 there are two defined methods of using Self Bag Drop conveyor devices.

• AEA-SBD (Section 7.16) allows complete control using the AEA2012-2 specification for bag drop
devices

• CUSS-SBD (Section 7.17) allows complete control using the CUSS traditional virtual component
model

CUSS platforms must implement both interface option s if running on a self-service kiosk that includes
a Self Bag Drop conveyor.

CUSS applications must only use one of the interfac e options when attempting to control Self Bag
Drop conveyor on the kiosk. An attempt to initialize both interfaces will result in an error: the platform shall
return RC_DENIED if the application calls acquire() and another interface has already been acquired.

Description of Device:

Integrated Baggage Systems are complex devices allowing passengers to check-in their baggage themselves. Typically
these devices are made from a set of separate devices for weighing and checking dimensions of the introduced bags as
well as validating printed and attached baggage tags before these bags are fed into the airports baggage sortation systems.
Scanning and validating baggage tags are typically based on the license plate definitions defined in the IATA Resolution
740 and may be also supported by RFID antennas, but the specification does not restrict barcode formats used.

Integrated Baggage Conveyors systems are not intended to X-ray baggage for explosives or other security critical items as
this task is usually done prior or after the baggage check-in process.

An Integrated Baggage System always includes conveyers and integration into a baggage sortation system. For dedicate
weight scales for baggage that are not conveyors, see Section 7.17. A kiosk may be connected to a Baggage Scale and an
Integrated Baggage Conveyor at the same time.

Important Note: The Integrated Baggage System interface does not replace the CUSS interfaces for
card readers, passport readers, and document scanners. CUSS platforms must
provide the normal CUSS component interfaces for the devices, if equipped at the
position.

In addition to the CUSS interfaces, the platform may also provide optional access using
the AEA-SBD interface, but this is not required.

Important Note: This component definition extends the existing Conveyor component definition in
Section 7.17 below. Kiosks that include Self Bag Drop devices with a CUSS 1.3 platform
must provide both this AEA-SBD interface component as well as the complete CUSS
Conveyor component grouping.

Information and Background:

 Extended Device & Media Type Handling

Revision 1.3, June 2013 212

As indicated above, a previous Conveyor interface definition existed in CUSS-TS 1.2. Since 2009, new types of Self bag
Drop devices and capbalities highlighted gaps in this Conveyor interface, meaning a change was needed for CUSS-TS
1.3.

While the previous interface was designed around the CUSS “Standard Mode” virtual component model, the new
interface uses a direct command and control interface based on AEA-SBD, instead of a detailed multi-component model.

The reason for this change is the requirement from the Common Use community (airlines) that individual standards such
as CUSS and CUPPS not define their own native interfaces to integrated bag drop devices, but use a common approach as
encapsulated in the AEA2012-2 SBD specification.43

This CUSS-TS 1.3 maintains the existing component-based Conveyor model but adds and a simple UserOutput
component model that uses AEA-SBD as the control mechanism, in accordance with the industry wish for commonality.
The anticipated benefits of this approach are:

• A single effort to define a consistent specification within AEA-SBD, instead of individual effors within CUSS,
CUPPS, and AEA.

• Shortcomings aqnd ambiguities are resolved across the airline and airport community instead of being isolated in
specific working groups such as TSG-CUSS.

• Maintains the existing Conveyor interface from CUSS 1.2 (modified to meet more current needs) to ensure that
those with existing CUSS SBD investments do not require a complete update to their applications.

• Common use application development efforts will lower given that Self Bag Drop logic will be similar across
common use kiosk and agent applications, as well as proprietary applications.

• The AEA-SBD specification is easer to adapt and modify in response to industry needs as opposed to isolated

CUSS or CUPPS specifications.

The AEA-SBD specification is a separate standard published by and available by subscription from the Association
of European Airlines. It is not included with or part of the IATA CUSS Technical Specification.

http://www.aea.be/research/specs/index.html

43 For details, review meeting minutes from CUWG meetings in Orlando, USA, May 2012.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 213

Virtual Component Linking Diagram:

A CUSS application that chooses to use the AEA-SBD interface shall only acquire() the UserOutput and (if present and
needed) the DataOutput components listed above, and shall not acquire any of the other components related to the CUSS-
SBD interface (Conveyors, etc.) The platform will respond RC_DENIED if an attempt is made to acquire a CUSS-SBD
component after an AEA-SBD component has already been acquired, and vice versa.

Distinct Characteristics:

UserOutput
Characteristic Value
Manufacturer.FirmwareVersion This will include the indicator DS_TYPES_SBDAEA to confirm

the device represents an Integrated Baggage Conveyor
supporting the AEA2012-2 SBD extensions.

DataOutput (airport BHS) -- optional
Characteristic Value
Manufacturer.FirmwareVersion This will include the indicator DS_TYPES_RP1745 to indicate

that RP1745-compliant BSMs are supported by this data
interface.

Distinct Status Conditions:

The platform shall return RC_DENIED when an application attemps to call acquire() on an AEA -SBD
component after the application has already acquired a CUSS-SBD component

7.16.1 Data Format (DS_TYPES_SBDAEA)

All requests for the Integrated Baggage Conveyor UserOutput component using setup() and send() requests
must be constructed in accordance with the Self Baggage Drop (SBD) definition in AEA2012-2 (or, a later
version of AEA if specifically indicated in that later version of AEA.)

 Extended Device & Media Type Handling

Revision 1.3, June 2013 214

For more information on the command and response protocol for SBD devices in AEA2012-2, refer to the
official AEA documentation available from the Association of European Airlines (AEA.) Reference
information is included below.

The AEA specification for Self Bag Drop is published by the Association of European Airlines (AEA) and
is obtained by subscription purchase. It is not maintained, published, or available from IATA. Please
review the following website for more information.

 http://www.aea.be/research/specs/index.html

 Extended Device & Media Type Handling

Revision 1.3, June 2013 215

The following quick reference table is supported by the CUSS Integrated Baggage Conveyor component:

CUSS command restrictions As supported by the equipment

CUSS UserOutput::setup() PV, AV, CT, EP, ES, RI, RC, IS, IX, IL, VS, VX, VL, LS, LC, LT

CUSS UserOutput::send() SQ, BQ, CW, CR, CC, CB, CE, MG, LA, RD

Command Purpose Description Category Section

Device Capabilities and Information Applies to all SBD devices

PV Program Version Returns the program/firmware version in place on the SBD Detection/Configuration 2.49

AV AEA Version Returns the version of the AEA specification supported by the SVD Detection/Configuration 2.38

CT Code Transaction Sets the 1-5 letter transaction code for AEA messages Detection/Configuration 2.47

EP Environment Program Tells the SBD what operating parameters to use (weight units, etc.) Detection/Configuration 2.1

SBD Operating Parameters Applies to all SBD devices

ES Environment Status Returns the SBD's current operating parameters Detection/Configuration 2.2

RI Read Information Returns detailed information about the operation of the SBD Detection/Configuration 2.34

RC Read Configuration Returns the SBD's current equipment level and configuration Detection/Configuration 2.4

Status and Bag Monitoring Applies to all SBD devices

SQ Status Query Provides status condition of the individual components within the SBD Status Monitoring 2.6

BQ Bag Query Return all information about bags inside the SBD Status Monitoring 2.13

SQNI Status Query (unsoliticted) Asynchronous notification version of SQ Status Monitoring 2.8

BQNI Bag Query (unsolicited) Asynchronous notification version of BQ Status Monitoring 2.22

Conveyor Control Applies to all SBD devices

CW Conveyor Wait Stops SBD operation and, if equipped, closes and locks the access door Mechanical Control 2.9

CR Conveyor Resume Starts SBD operation and, if equipped, unlocks and opens access door Mechanical Control 2.11

CC Conveyor Control Process a bag or move it between belts or to the airport BSS Mechanical Control 2.23

CE Cancel Bag (LED) Cancels the bag process, returns bags, and indicates the LED Mechanical Control 2.41

CB Cancel Bag (LED/Buzzer) Cancels the bag process, returns bags, and indicates the LED and buzzer Mechanical Control 2.44

Passenger Display Screen Control Only where equipped

LA Lighting and Audio Controls LED/light and audio operations on the SBD User Indicators 2.36

MG Message Graphics Provides text, graphics, or video to display on optional screen User Indicators 3.1

IS Image Status Returns the list of images currently loaded in system Status Monitoring 3.4

VS Video Status Returns the list of videos currently loaded in system Status Monitoring 3.5

IX Image Clear Clears all images loaded in the system Detection/Configuration 3.6

VX Video Clear Clears all videos loaded in the system Detection/Configuration 3.7

IL Image Load Load an image into the system Detection/Configuration 3.8

VL Video Load Load a video into the system Detection/Configuration 3.9

Receipt Printer Control Only where equipped

RD Receipt Document Sets the receipt data to print on the receipt printer in the SBD Mechanical Control 4.5

LT Logo Type Sets logo data to use on receipt printer Detection/Configuration 5.1

LS Logo Status Returns a list of all receipt printer logos loaded in the system Status Monitoring 5.4

LC Logo Cancel Clears logo(s) loaded in the system Detection/Configuration 5.7

Extended Data Notification Only where equipped

BCRI Bar Code Reader Info Provides barcode scanner data for non-bagtag reader in the SBD Status Monitoring 6.1

OCRI Optical Charater Reader Info Provides OCR MRZ scanner data for reader integrated in the SBD Status Monitoring 6.2

MSRI Mag Stripe Reader Info Provides multi-track magnetic card data for reader integrated in the SBD Status Monitoring 6.3

RFDI Radio Frequency Document InfoProvides RFID data for e-Passport reader integrated in the SBD Status Monitoring 6.4

RFRI Radio Frequency Reader Info Provides RFID data for radio reader integrated in the SBD Status Monitoring 6.5

NFCI Near Frequency Comm Info Provides data for NFC reader integrated in the SBD Status Monitoring 6.9

BIOI Biometric Information Provides data for Biometrics reader integrated in the SBD Status Monitoring 6.1

CAMI Camera Information Providers data for snapshot/picture reader integrated in the SBD Status Monitoring 6.11

 Extended Device & Media Type Handling

Revision 1.3, June 2013 216

The CUSS standard limits which AEA commands an application is permitted to send to the Integrated Baggage
Conveyor, in order to maintain the state of the device for all applications.

Please refer to the AEA2012-2 SBD specification directly for information on the differences between soliticed
and unsolicited events, for example SQOK responses compared to SQNI responses to the SQ command.

Unsolicited AEA messages such as SQNI, must be reported to CUSS applications as DATA_PRESENT events
sent to the event listener registered by the application for the UserOutput components. As this component is not
an Input component and does not support the receive() directive, the AEA message information shall be
included in the event datastream field in the aeaDataType format.

To ensure that CUSS can use Self Bag Drop devices and future versions of AEA-SBD, there are no
restrictions on which commands an application may issue to SBD devices. As of AEA2012-2, the following
commands are defined with the AEA specification and will be supported by the platform:

Self bag Drop (SBD) devices (AEA2012-2 or later):

setup() directive:

PV, AV, CT, EP, ES, RI, RC, IS, IX, IL, VS, VX, VL, LS, LC, LT

send() directive:

SQ, BQ, CW, CR, CC, CB, CE, MG, LA, RD

Important Notice: certain AEA-SBD commands or command parameters, for example environment
settings requests via the ES command, may need to be restricted by the platform in order to protect the
integratity and operation of the SBD device in a shared environment.

In those cases where the platform needs to restrict the request, it shall return the appropriate AEA-SBD
response string indicated for the failure of the requested command, if defined, or ERR7 if not defined.

7.16.2 Data Format (DS_TYPES_RP1745)

The Baggage Handling System (BHS) component is an optional component of the CUSS-SBD interface.

BHS DataOutput components that support communication via Baggage Source Messages (BSM) will report this
capability by including the DS_TYPES_RP1745 Characteristic.

All BSM requests for the Baggage Handling System DataOutput component using send() must be standard
Baggage Source Messaging as defined in IATA Recommended Practice RP1745 and must contain at least
elements .V, .F and .N.

For more information on the specification for BSMs, please review IATA Recommended Practice 1745-
Baggage Information Messages. Here is an example message:

BSM

 Extended Device & Media Type Handling

Revision 1.3, June 2013 217

.V1LFRA

.F/LH123/15MAR/BCN/F

.N0220567890001

.PGEHLING/AMR

ENDBSM

Not all BHS components will support BSMs. BHS components that do not support BSMs are typically used
only for monitoring the condition of the airport baggage system/belt. There are no dedicated BHS status codes
defined in the CUSS Technical Specification; the availability of the BHS shall be reported using existing CUSS
virtual event and status codes.

7.16.3 Important Information and Clarifications

Where do I find the AEA-SBD Technical Specification ?

The AEA specification for Self Bag Drop is published by the Association of European Airlines (AEA)
and is available by subscription purchase. It is not maintained, published, or available from IATA.
Please review the following website for more information.

 http://www.aea.be/research/specs/index.html

How do I suggest changes or clarifications to the t he AEA-SBD Technical Specification?

Please contact the AEA group listed above, which controls the AEA-SBD specification. The IATA CUSS
Technical Solution Group may also make direct requests to AEA on behalf of the CUSS technical
community, if appropriate to ensure the consistency of CUSS implementations of AEA-SBD.

Does the enable() directive immediately activate th e AEA-SBD device?

No. A self bag drop is a collection of multiple components including conveyors, scales and belts. The
CUSS enable() directive does not physically activate any specific component of the SBD. It only allows
the application to send AEA-SBD commands to manipulate the individual components, such as the CR
command to enable the conveyor and drop point.

Does the AEA-SBD interface support reading multiple License Plate barcodes at once?

Yes, the SBD interface allows the conveyor device to read and report more than one license plate
barcode in its scanning area. This information is reported to the application as multiple BQ information
sequences and similar. Refer to the AEA-SBD specification for more details.

Does the AEA-SBD interface support reading multiple other barcodes at once?

No, the SBD currently (as of AEA2012-2 SBD) supports reading only a single barcode using its
boarding pass or handle held scanner.

How is RFID data encoded for the RFID reader capabi lity of the AEA-SBD?

 Extended Device & Media Type Handling

Revision 1.3, June 2013 218

The current AEA2012-2 SBD specification does not list an encoding format; however, the data is
encoded in base64 format. A future update to AEA-SBD will include more information on RFID
formatting.

Applications that need to read RFID in a well-defined structure should use the alternate CUSS-SBD
interface described in 7.17.

Does the AEA-SBD interface support RFID Writers/Enc oders?

No, the current AEA2012-2 SBD specification only includes support for RFID readers. A future update
to AEA-SBD may add RFID encoding features.

Applications that need to encode RFID in the current specification, should use the alternate CUSS-SBD
interface described in 7.17.

How do I determine where the reader components are, such as the scale, license plate scanner,
I order to properly read data from the bags.

There is no method in the current AEA2012-2 SBD to determine the specific configuration and design
of the SBD device, such as where or how it reads bag weight, verifies bag dimensions, scans for
attached tags, and similar.

This information is hidden from the application since a wide range of hardware designs exists, and it is
unreasonably to impose that applications track and control the devices at that level.

This, the applications must use the “process bag” request (CP) and it is a platform and/or SBD device
requirement to properly manipulation and position the bag (if needed) to read the data and return it the
the application. It is not an application responsitily.

Why are the Light, Audio, Screen and Receipt compon ents included in AEA-SBD and not as
native CUSS interfaces?

The AEA-SBD specification is designed around fully-integrated self bag drop systems that include all
the features needed to carry out a bag drop transaction. To allow this, the AEA-SBD specification lists
certain optional components:

� Light/LED indicator
� Beeper/buzzer
� Screen capable of displaying text, graphics, and animations
� Receipt printer for baggage receipts

These component types do not currently have CUSS interface definitions. Since these sub components
are designed to be an integral part of a bag drop machine and they are defined as optional in AEA-
SBD, applications must control them using AEA.

In addition, the AEA-SBD command specification allows the application to “inline” requests for multiple
sub components into a single command, for example combining a CC (conveyor control), RD (receipt

 Extended Device & Media Type Handling

Revision 1.3, June 2013 219

print) and LA (light/audio) requests into a single AEA command. For this reason, the components must
remain integrated in CUSS.

The AEA-SBD specification includes support for MRZ, barcode, RFID, and other media readers.
Should I use the AEA interface, or will these devic es continue to be available though CUSS
standard component interfaces?

The AEA-SBD specification is designed around fully-integrated self bag drop systems that include all
the features needed to carry out a bag drop transaction. To allow this, the AEA-SBD specification lists
capabilities for very advanced devices that include optional components:

� Passport/MRZ reader
� Barcode reader
� Biometric reader
� RFID/NFC reader
� Snapshot/camera
� Receipt printer

If these devices are available for use on a self-service baggage drop off point, for transactions other
than bag drop operations (for example, check-in or doc check) then the CUSS platform must allow the
application to control the device using the CUSS standard component mode as described extensively in
this document. The CUSS platform may also choose to expose the components using AEA-SBD in
addition to the CUSS standard implementation of these devices.

To be very clear:

o If a kiosk running a CUSS 1.3 platform includes a self-bag drop device which includes a card
reader, and the kiosk does not include its own separate card reader, then the CUSS platform
must implement the Card Reader interface as defined in Section 7.7 or Section 7.8 to
control the card reader integrated into the SBD.

o If a kiosk running a CUSS 1.3 platform includes a self-bag drop device which includes a
customer-facing barcode scanner, and the kiosk does not include its own separate barcode
scanner, then the CUSS platform must implement the Barcode Scanne r interface as
defined in Section 7.13 to control the customer-fac ing barcode scanner integrated into
the SBD.

o If a kiosk running a CUSS 1.3 platform includes a self-bag drop device which includes a MRZ
document reader, and the kiosk does not include its own separate document reader, then the
CUSS platform must implement the document reader in terface as defined in Section 7.12
or 7.14 to control the customer-facing barcode scan ner integrated into the SBD.

o If a kiosk running a CUSS 1.3 platform includes a self-bag drop device which includes a BTP
bag tag printer, and the kiosk does not include its own separate bag tag printer, then the CUSS
platform must implement the bag tag printer interfa ce as defined in Section 7.6 to control
the customer-facing bag tag printer integrated into the SBD.

o If a kiosk running a CUSS 1.3 platform includes a self-bag drop device which includes a receipt
printer, and the kiosk does not include its own separate General Purpose Printer (GPP), then
the CUSS platform must implement the GPP interface as defined in Section 7.12 or 7.14
to control the receipt printer integrated into the SBD.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 220

� This requirement does not apply if the integrated SBD receipt printer is not capable of
general purpose printing.

o In all cases, a CUSS platform may choose to provide access to these devices via the AEA-SBD
protocol, in addition to the CUSS component mode access mandated above, so long as this is
done in a way where both types of interface behave according to their respective specifications.

7.16.4 AEA-SBD Command and Control Examples

The AEA-SBD control protocol for Self Bag Drop devices is used in CUSS kiosks, CUPPS workstations, and in
proprietary systems. For this reason knowledge and expertise regarding AEA-SBD command sequence
extends beyond this CUSS Technical Specification.

For information on appropriate usage of the AEA-SBD specification, the CUSS Technical Specification thus
does not attempt to create a reference document here and defers to the AEA specification and community
itself, or other working areas within the Common Use community

 Extended Device & Media Type Handling

Revision 1.3, June 2013 221

7.16.5 Typical Sequence Diagram (AEA-SBD component)

 Extended Device & Media Type Handling

Revision 1.3, June 2013 222

7.16.6 Receipt and Heavy Tag Printing

Please refer to section 6.4 for information on how specialty document printing, such as baggage receipts and
heavy tag printing, should be accomplished using the existing CUSS General Purpose Printer (GPP) capability
for SVG and PDF documents.

These specialty GPP printers will be their own component group and not linked to the SBD components.

In particular, if a CUSS kiosk supports heavy tag printing or baggage receipt printing as part of its self bag drop
device, the CUSS platform shall:

1. Include a GPP printer definition as set in Section 7.11 for each specialty printer
2. Ensure that the components’ Characteristics about paper size and orientation are accurate for each

printer
3. Include the characteristics keyword DS_TYPES_HEAVYTAG as part of a heavy tag printer

component’s Manufacturer.firmwareVersion setting.

As well, a kiosk provider shall publish information about the formatting and size requirements for their heavy
tag printer to all airlines deploying on the SBD kiosk. This is important because, at the time of publication of
this CUSS Technical Specification there is no industry standard for specialty/heavy tag printing.

For receipt printing, if the AEA-SBD implements a receipt printer interface on a device that is capable of
general purpose printing (not a line printer), the kiosk platform must also implement a CUSS GPP interface for
that receipt printer.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 223

7.17 Integrated Baggage System Conveyor (CUSS-SBD)

Important Notices:

Though it is similar, the CUSS-SBD interface is not backwards compatible with the previous
Conveyor interface in CUSS-TS 1.1 and 1.2. Applications and platforms will both need upgrades to
operate as CUSS-TS 1.3 compliant components. See below under 7.17.3 for more details.

In CUSS 1.3 there are two defined methods of using Self Bag Drop conveyor devices.

• AEA-SBD (Section 7.16) allows complete control using the AEA2012-2 specification for bag drop

devices
• CUSS-SBD (Section 7.17) allows complete control using the CUSS traditional virtual component

model

CUSS platforms must implement both interface option s if running on a self-service kiosk that includes
a Self Bag Drop conveyor.

CUSS applications must only use one of the interfac e options when attempting to control Self Bag
Drop conveyor on the kiosk. An attempt to initialize both interfaces will result in an error: the platform shall
return RC_DENIED if the application calls acquire() and another interface has already been acquired.

The CUSS Technical Specification does not address t he integration between the platform and the
SBD device. Every common use platform that needs to control a self bag drop device will need to review
the capabilities and command protocols for that SBD device and determine how to implement the CUSS
interface and convert it into SBD native device commands.

The CUSS Technical Specification does not address t he integration between SBD devices and
airport baggage systems. Every airport that acquires and deploys self bag drop devices will need to
integrate that SBD with the existing airport baggage and belt infrastructure. This integration might require
PLC and other systems programming, custom wiring and messaging, and similar changes. None of these
are in scope of the CUSS Technical Specification.

Description of Device:

Integrated Baggage Systems are complex devices allowing passengers to check-in their baggage themselves. Typically
these devices are made from a set of separate devices for weighing and checking dimensions of the introduced bags as
well as validating printed and attached baggage tags before these bags are fed into the airports baggage sortation systems.
Scanning and validating baggage tags are based on the license plate definitions defined in the IATA Resolution 740 and
may be also supported by RFID antennas.

Integrated Baggage Conveyors systems are not intended to X-ray baggage for explosives or other security critical items as
this task is usually done prior or after the baggage check-in process.

To better reflect the process of baggage check-in, comprising of insertion and weighing, verification and waiting for a free
slot on the carry-off belt the definition of the Integrated Baggage System always has three conveyor segments
(InsertionBelt, VerificationBelt and ParkingBelt), even when there’s no physical representation of e.g. a verification belt.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 224

Virtual Component Linking Diagrams:

A CUSS application that chooses to use the CUSS-SBD interface shall only acquire() the Conveyor, DataInput and
DataOutput components listed below, and shall not acquire the component for AEA-SBD (UserOutput.)

Figure 24: Linking for Integrated Baggage System including RFID support.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 225

Figure 25: Linking for an Integrated Baggage System without RFID support.

Insertion Belt

The insertion belt is that part of the whole conveyor system that is connected to the passenger (Conveyor + User). It
typically is connected to a scale for weighing and may also be connected to an RFID antenna for reading encoded RFID
baggage tags (IATA standard encoding). The insertion belt provides an offer() directive allowing applications to wait for
removal of a bag by the passenger.

The insertion belt allows moving baggage in forward direction only.

The virtual component will also include in the firmware version of its characteristics the string “DS_TYPES_SBDCUSS”.

Verification Belt

The verification belt describes the position on the conveyor where the weight is checked again to prevent fraud, where the
printed and attached baggage tags are scanned or where encoded data on the RFID chips is read for verification.

The verification belt allows moving baggage in both directions forward and backward.

The virtual component will also include in the firmware version of its characteristics the string “DS_TYPES_SBDCUSS”.

Parking Belt

 Extended Device & Media Type Handling

Revision 1.3, June 2013 226

The parking belt allows parking/delaying a bag before feeding it into the Baggage Sortation System (BSS) of the airport.
Parking a bag allows passengers to already continue the baggage check-in process with the next bag while the preceding
bag is about to be moved on to the carry-off belt. It also allows applications to return bags to the passenger in case the
baggage check-in transaction is cancelled or interrupted.

In terms of implementation, the parking belt is a derivation of the conveyor component implementation. Differently from
the other conveyor implementations the parking belt may NOT allow the backward() command if the current parked bag
is already in responsibility of the airport (e.g. BSM for that bag has been sent to the BSS but the bag is still waiting for a
free slot on the carry-off-belt). Once a bag is physically forwarded onto the carry-off-belt the parking belt sends a
BAGGAGE_ABSENT event to the application.

The virtual component will also include in the firmware version of its characteristics the string “DS_TYPES_SBDCUSS”.

Scale

Scale is a definition for a component that allowing to weigh baggage.

The scale component is implemented as a CUSS DataInput component. The scale component shall report only stable
weights as data to the application. However, the platform may take into account unstable weights to detect and report if
bags are present or not.

The virtual component can be identified by checking the firmware version of its characteristics for the string
“DS_TYPES_WEIGHT”.

RFID

The RFID component represents one or more RFID antennas capable of reading and writing (encoding) RFID chips. The
antenna that writes data to RFID baggage tags may be physically located within a baggage tag printer.

The RFID component is implemented as a CUSS DataInput and CUSS DataOutput component.

The virtual component can be identified by checking the firmware version of its characteristics for the string
“DS_TYPES_ISO15961”.

Barcode Scanner

A barcode scanner component for reading bar-coded baggage tags as per IATA Resolution 740. The barcode scanner may
also be linked to and physically located at the Insertion Belt.

The barcode scanner component is implemented as a CUSS DataInput component.

The virtual component can be identified by checking the firmware version of its characteristics for the string
“DS_TYPES_BARCODE”.

BSS

The BSS component defines a standard CUSS DataOutput interface to the airports baggage sortation system. It allows
passing Baggage Source Messages (BSM) to the airports sortation systems without knowing the details of the appropriate
interfaces. This component is optional.

In the case that airports require flight data like flight numbers and -dates before baggage can be fed into the baggage
sortation system these data elements then can be obtained from the provided BSM.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 227

If the airport doesn’t need to be informed about flight relevant data for a bag to be checked in and if there’s no need to
send BSMs to the airports sortation system the component will not be seen in the list of linked components.

The virtual component can be identified by checking the firmware version of its characteristics for the string
“DS_TYPES_RP1745”.

Distinct Characteristics:

Conveyor
Characteristic Value
maxWeight The maximum weight of the baggage (in grams)
maxWidth The maximum width of baggage (in millimeters)
maxHeigth The maximum height of baggage (in millimeters)
maxLength The maximum length of baggage (in millimeters)
maxBags The maximum number of bags a conveyor can handle
onewayForward If true, conveyor can only move into forward direction (the

backward directive is not supported)
userInterferenceCapable If true, conveyor system can detect and report user

interference events which are not considered critical to health,
safety and security

safetyIntrusionCapable If true, conveyor system can detect and report safety intrusions
which are considered critical to health, safety and security

barrierCapable Indicates if the belt component has a physical barrier control
controlling access to the belt insertion point.

Status Codes Definitions

Review Section 7.17.3 for more information on any of these status codes.

Normal Status:

Code Meaning
BAGGAGE_ABSENT No baggage present on position

BAGGAGE_FULL Max. number of bags reached in this conveyor position

BAGGAGE_TRANSPORT_BUSY Bag cannot be transported further at the moment (usually
from parking position to the carry off belt)

BAGGAGE_PRESENT Baggage present on position

Errors:

Code Meaning
BAGGAGE_UNEXPECTED_CHANGE The conveyor detected a change in the bag compared to a

previous state (based on any factors that the Conveyor
technology is able to detect that is not reported as dedicated
data on another component)

BAGGAGE_INTERFERENCE_USER A user interference (non-critical) was detected at some point
on the conveyor. Operations may proceed.

BAGGAGE_OVERSIZED Bag is too long/high/flat/short/heavy

BAGGAGE_TOO_FLAT Bag is too flat

 Extended Device & Media Type Handling

Revision 1.3, June 2013 228

BAGGAGE_TOO_HIGH Bag is too high

BAGGAGE_TOO_LONG Bag is too long

BAGGAGE_TOO_MANY_BAGS Baggage present, detected more than one baggage

BAGGAGE_TOO_SHORT Bag is too short

BAGGAGE_WEIGHT_OUT_OF_RANGE Weight exceeds weight range of conveyor system or SBD.

Fatal errors (These codes normally lead to system outage):

Code Meaning
BAGGAGE_EMERGENCY_STOP Person pressed the Emergency-Stop button.

BAGGAGE_INTRUSION_SAFETY A critical security/safety intrusion was detected at some
point on the conveyor. Operations are likely halted and in
error condition until a supervisor reset.

BAGGAGE_JAMMED Bag is jammed on conveyor

BAGGAGE_RESTLESS Bag is permanently moving, maybe it is- or contains a living
creature

BAGGAGE_MISTRACKED The movement of a bag did not take place as expected
when activating conveyors.

BAGGAGE_UNDETECTED Unexpected baggage absent

BAGGAGE_UNEXPECTED_BAG Unexpected baggage present.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 229

Figure 26: The class diagram for an Integrated Baggage System with directives per class.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 230

7.17.1 Device Component Interface Directives Extens ion

This chapter defines the relation between new status codes and the conveyor virtual component directives. The
relations of the standard CUSS status codes remain as they are defined in chapter [Device Component Interface
(DCI) Directives].

7.17.1.1 acquire

Function: acquire Virtual Component Types

Status Code
Insertion

B
elt

V
erificationB

e
lt

P
arkingB

e
lt

BAGGAGE_ABSENT X X X
BAGGAGE_FULL X X X
BAGGAGE_UNEXPECTED_CHANGE
BAGGAGE_WEIGHT_OUT_OF_RANGE
BAGGAGE_INVALID_DATA
BAGGAGE_OVERSIZED X X X
BAGGAGE_PRESENT X X X
BAGGAGE_TOO_FLAT X X X
BAGGAGE_TOO_HIGH X X X
BAGGAGE_TOO_LONG X X X
BAGGAGE_TOO_MANY_BAGS X X X
BAGGAGE_TOO_SHORT X X X
BAGGAGE_MISTRACKED
BAGGAGE_TRANSPORT_BUSY
BAGGAGE_UNDETECTED X X X
BAGGAGE_UNEXPECTED_BAG X X X
BAGGAGE_JAMMED X X
BAGGAGE_EMERGENCY_STOP X X X
BAGGAGE_RESTLESS X X X
BAGGAGE_INTERFERENCE_USER X X X
BAGGAGE_INTRUSION_SAFETY X X X

The platform shall return RC_DENIED when an application attemps to call acquire() on a CUSS-SBD
component after the application has already acquired a AEA-SBD component.

7.17.1.2 backward

The function allows moving a bag back to the previous position or back to the user.

If this directive is called on any Insertion component that has the onewayForward characteristic set, the
platform shall return RC_NOT_SUPPORTED.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 231

Note that the offer() directive should be used to return a bag to the user from the Insertion belt, not backward().
This is because the SBD device may have mechanical barriers and such that require special operation.

Function: backward Virtual Component Types

Status Code

In
sertionB

elt

V
e

rification
B

elt

P
arkingB

elt

BAGGAGE_ABSENT X X X
BAGGAGE_FULL X X X
BAGGAGE_UNEXPECTED_CHANGE
BAGGAGE_WEIGHT_OUT_OF_RANGE
BAGGAGE_INVALID_DATA
BAGGAGE_OVERSIZED
BAGGAGE_PRESENT X X X
BAGGAGE_TOO_FLAT
BAGGAGE_TOO_HIGH
BAGGAGE_TOO_LONG
BAGGAGE_TOO_MANY_BAGS
BAGGAGE_TOO_SHORT
BAGGAGE_MISTRACKED X X X
BAGGAGE_TRANSPORT_BUSY X
BAGGAGE_UNDETECTED X X X
BAGGAGE_UNEXPECTED_BAG X X X
BAGGAGE_JAMMED X X
BAGGAGE_EMERGENCY_STOP X X X
BAGGAGE_RESTLESS X X X
BAGGAGE_INTERFERENCE_USER X X X
BAGGAGE_INTRUSION_SAFETY X X X

7.17.1.3 cancel

This directive is a specific request that an operation in progress on the particular component be cancelled, if
possible. For example, an application can attempt to cancel the forward(), backward(), offer(), send() and
receive() directives.

Depending on the capabilities of the SBD components, and when the cancel request is made, there is no
guarantee that the cancel request will be honoured. An application should track the condition of the affected
components() after a cancel is complete.

The cancel() directive is NOT a request to halt a bag drop transaction completely. To halt a transaction
completely, an application must implement the business logic required to control each component, return
bags to customers, wait for customers to retrieve their bag, and similar tasks.

The cancel() directive shall return the status codes listed in section 3.6.10.1.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 232

7.17.1.4 disable

The function disables user bag deposit on the insertion conveyor, either by activating a physical barrier or by
activating interference/detection sensors. It is only available on the InsertionBelt component.

Applications can review the barrierCapable characteristic to determine if a barrier is present. However
applications must call disable() even for devices without a physical barrier, as the platform and self bag drop
device may need to perform other tasks to cease accepting bags.

Application suppliers should note that the decision of when to call enable() and disable() during a customer
transaction is a business logic decision of the application in accordance with the above guidance.

Function: disable
Virtual
Component
Types

Status Code

In
sertionB

elt

BAGGAGE_ABSENT X
BAGGAGE_FULL X
BAGGAGE_UNEXPECTED_CHANGE X
BAGGAGE_INVALID_DATA
BAGGAGE_OVERSIZED X
BAGGAGE_PRESENT X
BAGGAGE_TOO_FLAT X
BAGGAGE_TOO_HIGH X
BAGGAGE_TOO_LONG X
BAGGAGE_TOO_MANY_BAGS X
BAGGAGE_TOO_SHORT X
BAGGAGE_MISTRACKED
BAGGAGE_TRANSPORT_BUSY
BAGGAGE_UNDETECTED X
BAGGAGE_UNEXPECTED_BAG X
BAGGAGE_JAMMED X
BAGGAGE_EMERGENCY_STOP X
BAGGAGE_RESTLESS X
BAGGAGE_INTERFERENCE_USER X
BAGGAGE_INTRUSION_SAFETY X

7.17.1.5 enable

The function enables user bag deposit on the insertion conveyor, either by removing a physical barrier or by
suspending interference/detection sensors. It is only available on the InsertionBelt component.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 233

Applications can review the barrierCapable characteristic to determine if a barrier is present. However
applications must call enable() even for devices without a physical barrier, as the platform and self bag drop
device may need to perform other tasks to prepare for bag acceptance.

Application suppliers should note that the decision of when to call enable() and disable() during a customer
transaction is a business logic decision of the application in accordance with the above guidance.

Function: enable Virtual
Component

Status Code

In
se

rtionB
elt

BAGGAGE_ABSENT X
BAGGAGE_FULL X
BAGGAGE_UNEXPECTED_CHANGE
BAGGAGE_WEIGHT_OUT_OF_RANGE
BAGGAGE_INVALID_DATA X
BAGGAGE_OVERSIZED X
BAGGAGE_PRESENT X
BAGGAGE_TOO_FLAT X
BAGGAGE_TOO_HIGH X
BAGGAGE_TOO_LONG X
BAGGAGE_TOO_MANY_BAGS X
BAGGAGE_TOO_SHORT X
BAGGAGE_MISTRACKED
BAGGAGE_TRANSPORT_BUSY
BAGGAGE_UNDETECTED X
BAGGAGE_UNEXPECTED_BAG X
BAGGAGE_JAMMED X
BAGGAGE_EMERGENCY_STOP X
BAGGAGE_RESTLESS X
BAGGAGE_INTERFERENCE_USER X
BAGGAGE_INTRUSION_SAFETY X

7.17.1.6 forward

The function allows moving a bag to the next position on the conveyor or to the airports take-away belt.

An application would typically verify the condition and capacity of the next belt in the chain (Insertion �
Verification � Parking � Airport) prior to issuing this directive.

Important Note:

If the conveyor is the parking belt a call to forward() indicates an intent to promote the bag to the airport
baggage belt and the bag is no longer in control of the SBD. Please review the description of

 Extended Device & Media Type Handling

Revision 1.3, June 2013 234

BAGGAGE_ACCEPTED and BAGGAGE_DELIVERED below for information on how to detect what
happened to a bag forwarded from the parking belt.

Function: forward Virtual Component Types

Status Code

In
sertionB

elt

V
e

rification
B

elt

P
arking

B
elt

BAGGAGE_ABSENT X X X
BAGGAGE_FULL X X X
BAGGAGE_UNEXPECTED_CHANGE X X
BAGGAGE_WEIGHT_OUT_OF_RANGE X X
BAGGAGE_INVALID_DATA
BAGGAGE_OVERSIZED X X X
BAGGAGE_PRESENT X X X
BAGGAGE_TOO_FLAT X X X
BAGGAGE_TOO_HIGH X X X
BAGGAGE_TOO_LONG X X X
BAGGAGE_TOO_MANY_BAGS X X X
BAGGAGE_TOO_SHORT X X X
BAGGAGE_MISTRACKED X X X
BAGGAGE_TRANSPORT_BUSY X
BAGGAGE_UNDETECTED X X X
BAGGAGE_UNEXPECTED_BAG X X X
BAGGAGE_JAMMED X X X
BAGGAGE_EMERGENCY_STOP X X X
BAGGAGE_RESTLESS X X X
BAGGAGE_INTERFERENCE_USER X X X
BAGGAGE_INTRUSION_SAFETY X X X
BAGGAGE_ACCEPTED X
BAGGAGE_DELIVERED X

7.17.1.7 offer

The function allows waiting for a bag to be removed by the passenger, either by operating a physical barrier or
by suspending interference/detection sensors. It is only available on the InsertionBelt component.

The directive waits for the customer to remove a bag from the insertion belt, then re-activates the physical
barrier or interference/detection sensors.

Applications can review the barrierCapable characteristic to determine if a barrier is present. However
applications should call offer() even for devices without a physical barrier.

Function: offer Virtual
Component

 Extended Device & Media Type Handling

Revision 1.3, June 2013 235

Status Code

In
sertionB

elt

BAGGAGE_ABSENT X
BAGGAGE_FULL X
BAGGAGE_UNEXPECTED_CHANGE
BAGGAGE_INVALID_DATA X
BAGGAGE_OVERSIZED X
BAGGAGE_PRESENT X
BAGGAGE_TOO_FLAT X
BAGGAGE_TOO_HIGH X
BAGGAGE_TOO_LONG X
BAGGAGE_TOO_MANY_BAGS X
BAGGAGE_TOO_SHORT X
BAGGAGE_MISTRACKED X
BAGGAGE_TRANSPORT_BUSY
BAGGAGE_UNDETECTED X
BAGGAGE_UNEXPECTED_BAG X
BAGGAGE_JAMMED X
BAGGAGE_EMERGENCY_STOP X
BAGGAGE_RESTLESS X
BAGGAGE_INTERFERENCE_USER X
BAGGAGE_INTRUSION_SAFETY X

7.17.1.8 process

The directive allows the application to request that the SBD examine and process the bag currently on a belt
component in order to get data about the bag (dimensions, scan, RFID, and similar.)

In response, the platform will activate the bag detection capabilities on the SBD (which may involve belt
movement and similar, and vary depending on the type of device), and report the current data back to the
application for verification using DATA_PRESENT event or other events as applicable (such as
BAGGAGE_TOO_LONG.)

If a Belt component does not support examination and processing of a bag and cannot return data for the bag,
the platform shall return RC_NOT_SUPPORTED.

Function: process Virtual Component Types

Status Code

InsertionB
e

lt

V
erificationB

elt

P
a

rkingB
e

lt

BAGGAGE_ABSENT X X X
BAGGAGE_FULL X X X

 Extended Device & Media Type Handling

Revision 1.3, June 2013 236

BAGGAGE_UNEXPECTED_CHANGE X X X
BAGGAGE_WEIGHT_OUT_OF_RANGE X X
BAGGAGE_INVALID_DATA X X X
BAGGAGE_OVERSIZED X X
BAGGAGE_PRESENT X X X
BAGGAGE_TOO_FLAT X X
BAGGAGE_TOO_HIGH X X X
BAGGAGE_TOO_LONG X X X
BAGGAGE_TOO_MANY_BAGS X X X
BAGGAGE_TOO_SHORT X X X
BAGGAGE_MISTRACKED X X X
BAGGAGE_TRANSPORT_BUSY X
BAGGAGE_UNDETECTED X X X
BAGGAGE_UNEXPECTED_BAG X X X
BAGGAGE_JAMMED X X X
BAGGAGE_EMERGENCY_STOP X X X
BAGGAGE_RESTLESS X X X
BAGGAGE_INTERFERENCE_USER X X X
BAGGAGE_INTRUSION_SAFETY X X X

7.17.1.9 query

Function: query Virtual Component Types

Status Code

InsertionB
e

lt

V
erificationB

elt

P
a

rkingB
e

lt

BAGGAGE_ABSENT X X X
BAGGAGE_FULL X X X
BAGGAGE_UNEXPECTED_CHANGE X X
BAGGAGE_WEIGHT_OUT_OF_RANGE X X
BAGGAGE_INVALID_DATA
BAGGAGE_OVERSIZED X X X
BAGGAGE_PRESENT X X X
BAGGAGE_TOO_FLAT X X X
BAGGAGE_TOO_HIGH X X X
BAGGAGE_TOO_LONG X X X
BAGGAGE_TOO_MANY_BAGS X X X
BAGGAGE_TOO_SHORT X X X
BAGGAGE_MISTRACKED X X X
BAGGAGE_TRANSPORT_BUSY X
BAGGAGE_UNDETECTED X X X
BAGGAGE_UNEXPECTED_BAG X X X
BAGGAGE_JAMMED X X
BAGGAGE_EMERGENCY_STOP X X X
BAGGAGE_RESTLESS X X X
BAGGAGE_INTERFERENCE_USER X X X
BAGGAGE_INTRUSION_SAFETY X X X

The CUSS platform shall respond BAGGAGE_ABSENT instead of OK to query() requests when no bag is
present and no other error condition is detected.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 237

Notwithstanding the above requirement for CUSS platforms, for compatibility reasons it is recommended that
CUSS applications should accept and interpret OK and BAGGAGE_ABSENT as equivalent.

7.17.1.1 receive

The receive() directive is used to return available bag dimension data from the specified conveyor. This data is
included in accordance with the CUSS.SBD.XSD schema format.

7.17.1.2 release

Function: release Virtual Component Types

Status Code

InsertionB
e

lt

V
e

rificationB
elt

P
a

rkingB
elt

BAGGAGE_ABSENT X X X
BAGGAGE_FULL X X X
BAGGAGE_UNEXPECTED_CHANGE X X
BAGGAGE_WEIGHT_OUT_OF_RANGE
BAGGAGE_INVALID_DATA
BAGGAGE_OVERSIZED X X X
BAGGAGE_PRESENT X X X
BAGGAGE_TOO_FLAT X X X
BAGGAGE_TOO_HIGH X X X
BAGGAGE_TOO_LONG X X X
BAGGAGE_TOO_MANY_BAGS X X X
BAGGAGE_TOO_SHORT X X X
BAGGAGE_MISTRACKED X X X
BAGGAGE_TRANSPORT_BUSY X
BAGGAGE_UNDETECTED X X X
BAGGAGE_UNEXPECTED_BAG X X X
BAGGAGE_JAMMED X X X
BAGGAGE_EMERGENCY_STOP X X X
BAGGAGE_RESTLESS X X X
BAGGAGE_INTERFERENCE_USER X X X
BAGGAGE_INTRUSION_SAFETY X X X

7.17.1.3 send

The send() directive is available on certain CUSS-SBD components but is reserved for future use.

7.17.1.4 setup

Function: setup Virtual Component Types

 Extended Device & Media Type Handling

Revision 1.3, June 2013 238

Status Code

In
sertionB

elt

V
e

rification
B

elt

P
arkingB

elt

BAGGAGE_ABSENT X X X
BAGGAGE_FULL X X X
BAGGAGE_UNEXPECTED_CHANGE X X
BAGGAGE_WEIGHT_OUT_OF_RANGE X X
BAGGAGE_INVALID_DATA
BAGGAGE_OVERSIZED X X X
BAGGAGE_PRESENT X X X
BAGGAGE_TOO_FLAT X X X
BAGGAGE_TOO_HIGH X X X
BAGGAGE_TOO_LONG X X X
BAGGAGE_TOO_MANY_BAGS X X X
BAGGAGE_TOO_SHORT X X X
BAGGAGE_MISTRACKED X X X
BAGGAGE_TRANSPORT_BUSY X
BAGGAGE_UNDETECTED X X X
BAGGAGE_UNEXPECTED_BAG X X X
BAGGAGE_JAMMED X X X
BAGGAGE_EMERGENCY_STOP X X X
BAGGAGE_RESTLESS X X X
BAGGAGE_INTERFERENCE_USER X X X
BAGGAGE_INTRUSION_SAFETY X X X

7.17.1.5 test

Function: test Virtual Component Types

Status Code

InsertionB
e

lt

V
erificationB

elt

P
a

rkingB
elt

BAGGAGE_ABSENT X X X
BAGGAGE_FULL X X X
BAGGAGE_UNEXPECTED_CHANGE X X
BAGGAGE_WEIGHT_OUT_OF_RANGE X X
BAGGAGE_INVALID_DATA
BAGGAGE_OVERSIZED X X X
BAGGAGE_PRESENT X X X
BAGGAGE_TOO_FLAT X X X
BAGGAGE_TOO_HIGH X X X
BAGGAGE_TOO_LONG X X X
BAGGAGE_TOO_MANY_BAGS X X X
BAGGAGE_TOO_SHORT X X X
BAGGAGE_MISTRACKED X X X
BAGGAGE_TRANSPORT_BUSY X
BAGGAGE_UNDETECTED X X X

 Extended Device & Media Type Handling

Revision 1.3, June 2013 239

BAGGAGE_UNEXPECTED_BAG X X X
BAGGAGE_JAMMED X X X
BAGGAGE_EMERGENCY_STOP X X X
BAGGAGE_RESTLESS X X X
BAGGAGE_INTERFERENCE_USER X X X
BAGGAGE_INTRUSION_SAFETY X X X

 Extended Device & Media Type Handling

Revision 1.3, June 2013 240

7.17.2 Data Formats

The following sections describe the data formats to be received or sent to the components of the baggage
system. The basic data format for all data shall be a string allowing also the transmission of XML formatted
data structures.

7.17.2.1 Bar-Code Scanner (DataInput)

The DataInput component for the bar-code scanner delivers its data in a CUSS msgDataType with the
appropriate number dataRecords in it. The number of dataRecords reflects the number of barcodes scanned. It’s
the applications responsibility to validate and check the delivered data, especially when the msgDataType holds
more than a single barcode or hold the correct barcode types.

It is anticipated that most SBD processing will use scanned License Plate Numbers as per IATA Resolution
740b, and that some SBD equipment may be optimized for or restricted to LPN barcodes. However the CUSS
specification itself supports any type of barcodes including 2D, BCBP, and non-LPN barcodes.

Format specification
(for LPN):

[0-9]{10}

Example: 5220100478

7.17.2.2 RFID Scanner (DataInput)

The DataInput component for the RFID scanner delivers its data in XML format in a CUSS msgDataType. - It
is ensured that only data from IATA Res.1740c compliant RFID tags is transferred to the application. If more
than only one RFID tag is scanned, the CUSS application is responsible for handling the correct RFID tag.
Therefore all RFID tags have a distinct tag identifier.

• The id is used to reference a specific/distinct RFID tag for encoding if the system detected more than
one RFID tag on a bag. So, if the system detects more than one RFID (e.g. LH and QF permanent tags)
on one bag it creates a unique reference for each tag found.

• For encoding (see below) the application will use the ’id’ to address a specific tag.

• The ‘key’ describes a single tag object. Objects could be either IATA-1740c defined objects, e.g. the key

for a LPN would be “1”, baggage routing would be using the key “5”. See below for examples, however
please refer to the official IATA Passenger Services Conference Resolutions Manual for details.

• Another (specific) use case is to encode the LPN for the RFID tag directly from a LPN scanned from an
attached bar-code. Therefore the application should set only: <property key=”1” /> without any LPN
data. - The SBD system then reads the LPN from an attached barcode (e.g. HPBT) and encodes the
RFID chip together with the regular data (itinerary etc.) and the scanned LPN.

• Additional non-IATA “key” values can also be used, in accordance with this table:

KeyKeyKeyKey Description for Reading RFIDDescription for Reading RFIDDescription for Reading RFIDDescription for Reading RFID

 Extended Device & Media Type Handling

Revision 1.3, June 2013 241

TAG
Whole content of memory bank 01, in Hex-ASCII.

To transmit non-IATA-conform read results. I.e. special encodings.

TID
Whole content of memory bank 10, in Hex-ASCII.

Used to identify RFID tag supplier.

APW

Content of memory bank 00, bit 32-63, in Hex-ASCII stored in element
<property><binary>

In case the access password is not readable (wrong access password or password
is permanently locked) this identifier is not added to the data field.

KPW

Content of memory bank 00, bit 00-31, Hex-ASCII.

In case the kill password is not readable (wrong access password or password is
permanently locked) this identifier is not added to the data field.

KILL

Kill or make undetectable the RFID tag specified with the ‘id’ attribute.

A kill password needs to be provided by the SBD application if the RFID tag is
not from a baggage tag stock provided by the CUSS platform (printed locally/on
demand). The kill password must be provided as Hex-ASCII in a separate
“KPW” property.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 242

Format specification
and example data:

msgDataType.records[0] XML message [CUSS.SBD.XSD]

< ?xml version="1.0" encoding="UTF-8"?>
<baggageData xmlns="urn:CUSS-1.3/types/conveyorInterface"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <rfidTagList>
 <rfidTag id="ID42ID42ID42ID42">
 <property key="1111">
 <string>5220100478522010047852201004785220100478</string>
 </property>
 <property key="2222">
 <string>55555555</string>
 </property>
 <property key="5555">
 <string>FRASINFRASINFRASINFRASIN</string>
 </property>
 </rfidTag>
 <rfidTag id="ID56ID56ID56ID56">
 <property key="1111">
 <string>5220100479522010047952201004795220100479</string>
 </property>
 <property key="2222">
 <string>55555555</string>
 </property>
 <property key="5555">
 <string>FRAORDFRAORDFRAORDFRAORD</string>
 </property>
 </rfidTag>
 </rfidTagList>
</baggageData>

7.17.2.3 RFID Scanner (DataOutput)

The DataOutput component for the RFID Encoder receives its data in XML format in a CUSS msgDataType.
The application uses the distinct tag identifier to address the right RFID tag for encoding.

XML data formatting is according to the XML schema mentioned below.

See the previous section for more information on the “id” and “key” values.

Format specification
and example data:

msgDataType.records[0] XML message [CUSS.SBD.XSD]

<?xml version="1.0" encoding="UTF-8"?>
<baggageData xmlns="urn:CUSS-1.3/types/conveyorInterface"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <rfidTagList>
 <rfidTag id="ID42ID42ID42ID42">
 <property key="1111">
 <string>5220100478522010047852201004785220100478</string>

 Extended Device & Media Type Handling

Revision 1.3, June 2013 243

 </property>
 <property key="2222">
 <string>55555555</string>
 </property>
 <property key="5555">
 <string>FRASINFRASINFRASINFRASIN</string>
 </property>
 </rfidTag>
 </rfidTagList>
</baggageData>

7.17.2.4 Scale (DataInput)

The DataInput component for the scale delivers its data in a CUSS msgDataType with a single dataRecord in it.
Regardless of the reporting units or precision of the scale component, the platform must convert (if needed) and
report the weight in metric grams. A weight of 0 grams is a valid weight.

Format specification
and example data:

msgDataType.records[0] XML message [CUSS.SBD.XSD]

<?xml version="1.0" encoding="UTF-8"?>
<baggageData xmlns="urn:CUSS-1.3/types/conveyorInterface"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <dimension>
 <load>
 <weight>18000180001800018000</weight>
 <alibi>
 <value>0123456789012345678901234567890123456789----ABCDEFABCDEFABCDEFABCDEF</value>
 </alibi>
 <stable>truetruetruetrue</stable>
 </load>
 </dimension>
</baggageData>

As part of commercial Weights & Measures regulations, some jurisdiction require that scales used for
commercial transactions also provide a measurement tracking reconciliation number, sometimes called an alibi
number, along with the measurement value.

If the scale and location require the use of alibi numbers, it is a platform requirement to provide the alibi
reference to the application. If provided, the alibi number must be included as the second data record in the
msgDataType array.

It is a platform implementation choice and task to determine how to generate, obtain, and track/audit weights
and alibi numbers, and all other aspects of compliance with local or Weights & Measures requirements relating
to alibi numbers.

It is an application business logic decision to detect and properly use alibi numbers provided by the CUSS
platform. Usage requirements and alibi number syntax may vary from location to location, and cannot be
described by the CUSS Technical Standard.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 244

If a scale is able to detect unstable weight conditions, this condition shall be reported to the application as a
BAGGAGE_PRESENT event, which will not include any weight value.

7.17.2.5 Dimensions (Insertion, Verification and Pa rkingBelt)

Because they are Input components, the InsertionBelt, VerificationBelt and ParkingBelt components may be
able to provide extended bag dimension data as DATA_PRESENT events. They deliver this data in XML
format in a CUSS msgDataType as record 0. XML data formatting is according to the XML schema mentioned
below.

Format specification
and example data:

msgDataType.records[0] XML message [CUSS.SBD.XSD]

<?xml version="1.0" encoding="UTF-8"?>
<baggageData xmlns="urn:CUSS-1.3/types/conveyorInterface"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <dimension>
 <size>
 <width>30303030</width>
 <length>50505050</length>
 <height>42424242</heigth>
 <stable>truetruetruetrue</stable>
 </size>
 </dimension>
</baggageData>

7.17.2.6 BSS (DataOutput)

The DataOutput component for the BSS accepts data in a CUSS msgDataType with a single dataRecord.

The data itself is a standard Baggage Source Message (IATA RP 1745) containing at least the following
elements: .V, .F and .N.

Format specification
and example data:

msgDataType.records[0] XML message [CUSS.SBD.XSD] and
IATA Recommended Practice 1745 – Baggage Information

<?xml version="1.0" encoding="UTF-8"?>
<baggageData xmlns="urn:CUSS-1.3/types/conveyorInterface"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <bsmMessage><![CDATA[BSMBSMBSMBSM
.V1LFRA.V1LFRA.V1LFRA.V1LFRA
.F/LH123/15MAR/BCN/F.F/LH123/15MAR/BCN/F.F/LH123/15MAR/BCN/F.F/LH123/15MAR/BCN/F
.N0220567890001.N0220567890001.N0220567890001.N0220567890001
.PGEHLING/AMR.PGEHLING/AMR.PGEHLING/AMR.PGEHLING/AMR
ENDBSMENDBSMENDBSMENDBSM]]>
 </bsmMessage>
</baggageData>

 Extended Device & Media Type Handling

Revision 1.3, June 2013 245

Typical Sequence Diagram for Integrated Baggage Sys tem:

In addition to the example show nere, review section 7.17.4 for further examples of how to control an SBD
device under certain situations.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 246

Figure 27: Checking-in one bag only.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 247

7.17.3 Notes and Comments on Implementation

7.17.3.1 Deprecation of the existing CUSS 1.1 Conve yor interface

A previous version of the CUSS Technical Specification included a component model for self bag drop systems
that consisted of a single Conveyor component. This approach was introduced in CUSS 1.1 in 2005.

Since then, numerous implementations of Baggage Scale and Self Bag Drop solutions using the CUSS 1.1
Conveyor definition were deployed successfully by multiple vendors. However, some of the deployments had
problems understanding the Conveyor definition, or implementing required application functionality via the
Conveyor component.

For this reasons, as part of updating the CUSS standard to 1.3, the technical participants in the CUSS Technical
Solution Group decided to deprecate the existing Conveyor interface, and implement a new CUSS-SBD
interface that is not backwards compatible with the Conveyor interface from CUSS 1.1.

Deprecation means that although an interface remains in the Technical Specification for compatibility with
existing applications and platforms, the interface is intended to be removed from the next version of the
standard. For this reason CUSS applications should not rely on deprecated interfaces being available in
future releases of the CUSS Technical Specification.

The design goals of this new interface include:

• Extend the virtual component model from a single component to three components, to better reflect how
bags are processed at a drop off point as well as the actual design of some Self Bag Drop devices.

• Eliminate any “black box” behavior desicisions in the component that implement business logic or bag
processing rules that should be the application’s choice, not the platform’s

• Have a model that allows for a clear and well-defined implementations for baggage scales only (not
attached to a conveyor mechanism)

• Eliminate redundant error codes that duplicated concepts that inherently exist in the base CUSS
component model

• Allow more flexibility for changes for future Self Bag Drop needs that do not require a change to CUSS
IDLs.

• Ensure that typical bag processing requirements can be accomplished using the CBS component model,
and provide sample application usage flows demonstrating some of those cases

• Ensure that processing that should reside in the SBD and platform and PLC remain there, and are not
imposed on the application.

• Support an airline industry adoption of AEA-SBD as a control protocol by offering an alternative self
bag drop conveyor control interface. Alongside CUSS-SBD, for application suppliers that prefer a
simpler command model.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 248

The result of this process is the new three-Belt CUSS-SBD component model in this section.

While it unfortunately is not backwards compatible with the previous interface, and applications and platforms
that use the previous interface will require updates to be deployed under CUSS-TS 1.3, the TSG anticipates that
this new interface will be easier to use and more consistently implemented across platforms and SBD devices.

7.17.3.2 Weights and Dimensions, and Data Formats

This section provides information about the concepts of weights, dimensions, and limits for scales, conveyors,
and airport baggage systems.

maxWeight, maxWidth and other dimension limit Characteristics

Each belt component includes a set of characteristics that indicate the dimension limits of bags that can
be processed on the self bag drop device.

These weight, length, height and width limits represent the combined limits of the physical SBD unit
itself, and the overall limits of the airport baggage system to which the SBD is connected.

An application should review these limits as part of its business logic for detecting and processing bags.
The weight limit is in grams, and the dimension limits are in centimeters.

maxBags belt capacity Characteristic

Each belt component includes a characteristic that indicates the number if simultaneous bags that belt
can process.

Depending on the capability of the device, a self bag drop conveyor will likely support only one one bag
per belt position. Advanced SBD devices may support multiple bags in the Parking Belt position.

An application should review these bag capacity limits as part of its business logic for detecting and
processing bags. The application may choose to exploit the full capability of a SBD that supports
multiple simultaneous bags by implementating the advanced logic and monitoring required to operate
correctly in this configuration.

CUSS platforms will correctly report BAGGAGE_ABSENT, BAGGAGE_PRESENT and
BAGGAGE_FULL events on each belt position in view of the physical number of bags present on the
belt, and the belt’s maximum capacity. Applications should use these events to determine if room exists
for processing on a particular belt, not the maxBags setting.

An SBD that does not include a distinct physical belt for the Insertion Belt, Verification Belt and
Parking Belt, will share the same maxBags limit for each belt. For example, an SBD with a single belt

 Extended Device & Media Type Handling

Revision 1.3, June 2013 249

with a capacity of one bag will indicate maxBags=1 on three logical belt components, but will report the
BAGGAGE_FULL events as required and will have a total capacity of one bag (not three.)

The send() directive

Each belt component includes a send() directive. This directive is reserved for future use and does not
yet have a defined behavior.

The RFID Encoder component is a DataOutput component that supports send() directives. The data
being sent must comply with the XML format mentioned elsewhere in this section. The XSD is also
provided as interface file component of the CUSS Technical Specification.

The receive() directive

Each belt component includes a receive() directive, to be used to obtain data from the belt component.
The data is reported in XML format in accordance with the XSD definition included with the CUSS
Technical Specification.

The belt components return dimension data. Other data such as scanned barcodes are returned via the
appropriate DataInput component (for example, the scale DataInput component returns weight values.)

The belt components will only provide data in response to a process() directive. If the belt does not have
a capability of returning data, the platform will response RC_NOT_SUPPORTED when the application
calls process().

The RFID Reader, Barcode Scanner, Weight Scale, and other DataInput components return their own
data via the receive() directive. Those components will report the data in response to a process()
directive on the linked Belt component. The data format will be as defined for each component (see
above.)

Applications must combine and interpret the data obtained from different components in accordance
with their internal business logic requirements. For example, it is an application business logic
responsibility to obtain data from the Verification belt and determine if the bag has been changed or not.

Bar Code Scanning

Most self bag drop devices include barcode scanning capabilities as an essential component of accepting
airline bags. This barcode scanning capability is separate and distinct from the barcode scanner used on
the kiosks to read boarding passes or mobile phones.

The barcode scanner component of the SBD will indicate the DS_TYPES_BARCODE Characteristic.

If the scanner is capable of reading multiple barcodes at once, the CUSS platform will report multiple
data message records to the application, one for each unique barcode value that is scanned.

It is a CUSS requirement that all SBD barcode scanners be able to read IATA Resolution 740 license
plate numbers (LPNs) using the Interleaves 2 of 5 format. There is no require nor is there any restriction
in this CUSS Technical Standard on devices that report additional types of barcodes, such as 2D
barcodes read from permanent or home-printed bagtags.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 250

Heavy Tag printing and data formatting

The CUSS Technical Specification does not define a standard Heavy Tag document size or layout.
Please review Section 7.17.5 and refer to Appendix G for more information on Heavy Tag Printing.

7.17.3.3 Detecting and Notification of Bags

While self bag drop devices will include a scale component and the ability to read weight values, it is important
to note that SBD devices do not necessarily use the scale weight measurements (exclusively, or at all) to detect
if bags are present.

So while applications have access to the weight values directly from the scale components, applications should
not be designed to assume that the weight is the only way to detect a bag.

In particular, the SBD device’s ability to detect bags may or may not be based on weight readings from the
scale. In addition to or instead of weight measurements, an SBD could use any volumetric, seismic,
photographic, or other non-scale sensing capabilities can be used to detect bags.

BAGGAGE_ABSENT: No bag present on Belt or Scale

If the platform does not detect any bag on a Belt component, either by checking for weight or via any
other method, it will report BAGGAGE_ABSENT.

For the Scale component of the self bag drop device, BAGGAGE_ABSENT indicates that the scale is
stable and at the zero point (or within the zero-point range.)

BAGGAGE_ABSENT is a _public event that can be monitored even when an application is not
ACTIVE.

BAGGAGE_PRESENT: Bag(s) detected on Belt

If the platform detects any bag on a Belt component, either by checking for weight or via any other
method, it will report BAGGAGE_PRESENT.

If no futher bags can be added to a belt (in other words, the maxBags limit has been reached for a
particular belt) the platform will then report BAGGAGE_FULL.

Because the Scale component is a DataInput, when the scale reads a stable, non-zero weight it will not
report BAGGAGE_PRESENT but will send a DATA_PRESENT instead. A customer manipulating a
bag may lead to a sequence of BAGGAGE_PRESENT and DATA_PRESENT events as the weight
changes multiple times between unstable and stable.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 251

Depending on the mechanical layout of the self bag drop conveyor belt/scale components, the
BAGGAGE_PRESENT/BAGGAGE_ABSENT status of the scale component may or may not be in
sync with the BAGGAGE_PRESENT/BAGGAGE_ABSENT statuses of the belt components.

Bag movement on the belts or customer interaction with the bag (such as attaching a tag) will likely
generate unstable weights on the scale components. This is normal and should not be viewed as an error
by applications.

Applications should use this event to get the weight from the bag(s) placed on the associated Belt
components, but as mentioned above they should not rely exclusively on the scale weight indication to
detect whether or not bags are present.

Applications should anticipate that at the start of that application’s transaction, the insertion and
verification belts will be empty but the parking belt may have a bag on it already from the previous
transaction. This is a normal and acceptable condition.

BAGGAGE_PRESENT is a _public event that can be monitored even when an application is not
ACTIVE. For belts with a single bag capacity BAGGAGE_PRESENT will be followed almost
immediately by a BAGGAGE_FULL event.

BAGGAGE_FULL: Bag(s) detected on Belt and no more room on the belt

If the platform detects a bag on a Belt component, and there is no room (physically, or logically) on the
belt for additional items, the platform will report BAGGAGE_FULL for the belt.

Applications must be written to support both the BAGGAGE_PRESENT and BAGGAGE_FULL events
when monitoring the self bag drop device for bags. In particular, a large portion of SBD equipment will
only support one bag per belt, which will immediately result in a BAGGAGE_FULL event as soon as a
single bag is detected.

Applications should use the BAGGAGE_FULL event/status to determine which belt positions have
capacity for more bags. In particular, a parking belt that is not full means additional bags can be
processed on the insertion and verification belts while parked bags are waiting to be dispatched, even
across transactions.

Applications should anticipate that at the start of that application’s transaction, the insertion and
verification belts will be empty but the parking belt may already be full due to bag(s) from the previous
transaction. This is a normal and acceptable condition.

BAGGAGE_FULL is a _public event that can be monitored even when an application is not ACTIVE.

BAGGAGE_UNEXPECTED_CHANGE: bag change detected

Some self bag drop devices may include sensors and detection capabilities to detect when a bag has
changed compared to the bag that was previously there. This detection capability is in addition to any
ability to read and detect change in the bag weight, barcode(s), or RFID tags.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 252

For example, a self-bag-drop device may include a camera and volumetric video analysis software to
detect that the shape, position or color of a bag has changed.

If the SBD is able to detect a change in a bag that is not related to the bag’s weight, barcodes, or RFID
data (or any other data already provided to the application via a dedicated DataInput component) then
the platform should report this condition as a BAGGAGE_UNEPECTED_CHANGE.

It is an application business logic decision whether to react to and if and how it processes this event. It is
anticipated but not required that it would be treated similar to a user interference event or receiving
inconsistent weight data from the scale component.

In addition to checking for BAGGAGE_UNEXPECTED_CHANGE, it is an application business logic
responsibility to also monitor for changes in weight, barcodes, RFID information, by reading and
comparing these measurement values received by reading directly from the Belt and DataInput
components.

BAGGAGE_WEIGHT_OUT_OF_RANGE and similar: dimensions exceeded

Some self bag drop devices may include sensors and detection capabilities to detect when the
dimensions of a bag exceed to system limits set for the SBD device and connected airport baggage
system.

If these conditions can be detected, the platform should report them, in order of priority from highest to
lowest, as:

• BAGGAGE_OVERSIZED - exceeds multiple dimensions
• BAGGAGE_TOO_MANY_BAGS - collection of items detected
• BAGGAGE_WEIGHT_OUT_OF_RANGE - outside of acceptable weight range
• BAGGAGE_TOO_HIGH - exceeds height limitation
• BAGGAGE_TOO_LONG - exceeds length limitation
• BAGGAGE_TOO_SHORT - does not meet length minimum requirements
• BAGGAGE_TOO_FLAT - does not meet height minimum requirements

It is an application business logic decision whether to react to and if and how it processes these events. It
is anticipated but not required that bag processing will halt and the application will instruct the user on
processing limitations for bags at this position.

If an application ignores these conditions and attempts to continue processing the bag using the
process(), forward() or other directives, the platform and SBD may generate addition errors such as
BAGGAGE_MISTRACKED or similar.

BAGGAGE_ACCEPTED and BAGGAGE_DELIVERED: bag transfe r to the airport belt

An application issues a forward() directive on the Parking Belt to instruct the platform and self bag drop
device to convey the furthest bag on the parking belt, onto the airport baggage system belt.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 253

Depending on the design and capabilities of the airport and SBD belt systems, bags may physically
remain on the parking belt even though ownership and control is now in the hands of the airport baggage
system.

For example, the PLC on the parking belt may be waiting for an “open slot” on the airport belt to appear,
at which point the bag will automatically be promoted to the airport belt without any input from the
application or the platform.

When the forward() directive on the parking belt is successful, subject to the timeout parameter provided
by the application, the platform shall respond BAGGAGE_ACCEPTED if the bag remains physically on
the parking belt, and shall response BAGGAGE_DELIVERED if the bag is no longer on the parking
belt. In both cases, the bag is under control of the airport baggage system and cannot be returned to the
customer.

Neither BAGGAGE_ACCEPTED nor BAGGAGE_DELIVERED shall be responses to the query()
directive.

BAGGAGE_DELIVERED shall be provided as a _private event notification once an accepted bag
moves from the parking belt to the airport belt following a BAGGAGE_ACCEPTED response to the
forward() directive.

It is an application business logic decision to determine how to monitor and process these events. The
application may receive BAGGAGE_DELIVERED events even when it is no longer active.

However, generally speaking, an application should continue to process additional bags if needed, or
end its CUSS session, even if an accepted bag has not yet reported as delivered. In other words, it is safe
for an application to end its transaction even if a bag is still on the parking belt, as long as it is under the
airport baggage system’s control (as indicated by a BAGGAGE_ACCEPTED response.)

BAGGAGE_TRANSPORT_BUSY: availability of the airport baggage belt

Some platforms and baggage systems may be able to detect if the airport baggage system is able to
immediately accept bags (there is a physical or logical position available on the baggage belt.)

If a platform can detect when there are no immediate open slots available on the airport belt system, it
shall report the BAGGAGE_TRANSPORT_BUSY condition on the Parking Belt. This condition does
not apply to any other component of the SBD.

It is an application business logic decision to optionally check for this condition, and delay or modify the
customer bag transaction in response to this event. Generally speaking, however, this event should not
be used to prevent or restrict the progress of a transaction, except to provide an indication to the
customer that even though their transaction is finished, their bag may be delayed on the parking belt.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 254

7.17.3.1 Interference, Intrusion and Error Conditio ns

userInterferenceCapable and BAGGAGE_INTERFERENCE_USER

The three logical belt areas of an SBD may have the ability to to detect when a person or item intrudes into the
belt area at a time when no activity is expected.

If the intrusion is not considered a safety or security hazard, it is considered a user interference. This includes
areas that might be accessed casually by a traveler at the airport, such as reaching into a scale area or
temporarily depositing an item on a surface.

The CUSS platform and/or SBD device will not necessarily (but may) halt baggage processing and
belt or mechanical movement in response to a user interference event.

Here are examples of events which would be considered user interference events (if they occur while the
InsertionBelt is not enabled() and expecting customer interaction):

A light curtain or sensor is
obstructed in the area around the
insertion belt

Instruct the user to avoid reaching into the baggage area, then wait for the
interference to stop and resume the transaction, reprocessing the bag.

Weight is detected on a scale
component connected to the
insertion belt

Confirm if they passenger wishes to proceed with the transaction prior to intiating
any baggage movement, and then enable the belt and process as normal.

Someone attempts to lift a barrier or
bar to gain access to the insertion
belt

Instruct the user to cease interfering with the device, verify the condition of the
belt and barriers, then restart or resume bag processing that had been in progress.

Thermal, imaging or seismic sensors
detect someone reaching into the
insertion or verification areas

Instruct the user that the bag cannot be modified once the process has started, wait
for the interference to stop, then roll back and restart processing for that bag.

An object is thrown into the area
triggering motion or image sensors

Instruct the user to cease interfering with the device, verify the condition of the
belt and barriers, then restart or resume bag processing that had been in progress.

The exact user detection capabilities and methods for detecting interference and intrusion will vary from device
to device. A CUSS platform that includes an SBD device will need to:

• Determine what user interference detection capabilities exist on the SBD (if any)
• Map that capability to one or more of the belt components in an appropriate fashion
• Insure the belt component characteristic userInterferenceCapable is correct set
• Correctly detect interference conditions, report them to the application, and report again when the

intrusion is resolved by reverting the component back to the appropriate BAGGAGE status.

For the InsertionBelt component, the platform should only report interference conditions if the component is not
enabled and is not performing an offer(), since those enable and offer requests imply and expect user interaction
with the belt area.

As a user interference is not a safety or security hazard, the way in which an application handles the event
should treat it as a non-critical event. The CUSS standard does not mandate any specific steps to take, as this is
a business logic decision for the self bag drop application.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 255

A likely behavior sequence for an application responding to BAGGAGE_INTERFERENCE_USER would be:

• Notify the user to avoid interfering with the machine
• Interrupt any bag processing that the intrusion may have interfered with (for example, weight

verification)
• Monitor the component status until the intrusion condition is resolved, up to a certain timeout (for

example, a minute)
• Do not assume anything about positions of bags after this event; instead, verify with status calls
• It is expected that most users will cease the intrusion and the transaction can proceed normally after a

moment.
• Check the condition of the bags on all logical belt positions
• Resume the transaction if recovered within a specified period of time
• Cancel the transaction if there is no recovery in time

safetyIntrusionCapable and BAGGAGE_INTRUSION_SAFETY

The three logical belt areas of an SBD may have the ability to to detect when a person or item intrudes into a
belt area that would be considered a safety or security hazard.

A safety or security condition is one where an item or person is in an area that must be vacant at all times except
when processing bags and specifically directing bags into that area.

Any event that requires (based on local safety requirements) automatic and immediate mechanical
stoppage or any sort must be reported by the platform as a safety intrusion event.

Any situation that requires intervention from airport or airline staff to verify the condition of the
belt systems must be reported by the platform as a safety intrusion event.

The CUSS platform and/or SBD device must halt all belt or mechanical movement in response to a
safety intrusion event, and comply with any additional local safety and security requirements in
effect.

Here are examples of events which would be considered safety intrusion events (if they occur not as a result of
an intended bag movement):

A bag movement is detected at the
Verification or Parking belt that is
not expected (such as caused by an
animal or person crawling across
the belts)

Ensure that application instructions or local signage indicate that access to the belt
area is a safety concern and people should remain clear. Wait for up to 60 seconds
for the situation to resolve before resuming, or go unavailable until the condition
is resolved.

An object moves from the parking
belt to the airport belt that is not
expected

Ensure that application instructions or local signage indicate that bag processing
begins at the insertion point and is then automated to move the bag forward and to
accept the bag, and that passengers should only deposit the bag at the insertion
point.

Thermal, imaging or seismic sensors
detect someone reachine into the
parking area

As above.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 256

Restless bag or live bag detection
(depending on local requirements)

Ensure that application instructions or local signage indicate that bag processing
is only for cargo luggage and to avoid placing pets or children on the belt, and
that pet carriers require processing at a desk.

An Emergency Stop is triggered
elsewhere on the baggage processing
system that affects the SBD position

As above.

The exact user detection capabilities and methods for detecting intrusion will vary from device to device. A
CUSS platform that includes an SBD device will need to:

• Determine what safety intrusion detection capabilities exist on the SBD (if any)
• Map that capability to one or more of the Belt components in an appropriate fashion
• Insure the belt component characteristic safetyIntrusionCapable is correct set
• Correctly detect safety intrusion conditions, report them to the application
• Correctly detect when the intrusion condition is resolved (via manual intervention by staff or otherwise)

and revert all SBD components back to the appropriate current status.

Any event that requires an immediate halt to bag processing or device movement for health, safety and security
reasons must be reported as a safety intrustion. In addition, it is the responsibility of the platform and/or its
devices (PLC, etc.) to immediately halt bag processing and device movement in this situation.

There is no requirement for CUSS applications using the device to issue interface requests to halt processing or
movement and can assume that this hard stop has already taken place. After this point, the CUSS standard does
not mandate any specific steps or business logic decisions that should take place in the self bag drop
application.

A likely behavior sequence for an application responding to BAGGAGE_INTRUSION_SAFETY would be:

• Notify the user to avoid interfering with the machine
• Interrupt any bag processing that the intrusion may have interfered with (even though the SBD and

platform shall do any mechanical stops needed for health, safety and security automatically)
• Indicate to the user that the transaction cannot proceed
• Wait some predetermined time to see if the transaction is resolved (staff intervention, etc.)
• Do not assume anything about positions of bags after this event; instead, verify with status calls
• If no resolution, end the session and go to UNAVAILABLE
• Monitor the component status until the intrusion condition is resolved
• Set the application back to AVAILABLE and allow new transactions to start

Emergency Stop and BAGGAGE_EMERGENCY_STOP

An emergency stop is a special case of a safety intrusion that merits specific handling as it is a near-universal
characteristic of baggage handling systems and self bag drop devices. As such, the handling of an emergency
stop event is similar to handling a safety intrusion event.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 257

The CUSS platform and/or SBD device must halt all belt or mechanical movement in response to
an emergency stop event, and comply with any additional local safety and security requirements
in effect.

A CUSS platform that includes an SBD device will need to:

• Determine what the local Emergency Stop requirements are for the SBD and attached baggage belt
system

• Correctly detect emergency stop conditions and
o Take any action as per local requirements
o Indicate the event to the CUSS application
o Monitor the emergency stop condition until it is resolved (via manual intervention by staff or any

other mandated local process)
• Once resolved revert all SBD components back to the appropriate current status.

The requirements for responding to an emergency stop event may vary from site to site. It likely requires an
immediate halt to bag processing or device movement on the SBD, but may also require that all other SBDs,
belts, or conveyors in the area also halt immediately. It is the responsibility of the platform and/or its devices
(PLC, etc.) to immediately perform all halts for bag processing or device movement in response to an
emergency stop event.

There is no requirement for CUSS applications using the device to issue interface requests to halt processing or
movement and can assume that the platform and SBD have already done this. After this point, the CUSS
standard does not mandate any specific steps or business logic decisions that should take place in the self bag
drop application.

A likely behavior sequence for an application responding to BAGGAGE_EMERGENCY_STOP would be the
same as for handling a BAGGAGE_SAFETY_INTRUSION event.

BAGGAGE_RESTLESS: Unstable bag detected on a belt

Some self bag drop devices may include sensors and detection capabilities to detect when bags are not stable.
Unstable bags are considered restless bags, and include items or carriers containing pets, children, or items that
shift or vibrate.

If a platform is capable of detecting this condition and if there are local requirements that restless bags be
treated as a safety event, for example requiring that all belt movement be stopped, then the platform must treat a
restless bag as a safety intrusion event, processing it and reporting it as a BAGGAGE_RESTLESS event.

It is an application business logic decision whether to react to and if and how it processes this event. It is
anticipated but not required that it would be treated similar to a safety intrusion event.

BAGGAGE_MISTRACKED and similar: Mistracked or unexp ected bags

 Extended Device & Media Type Handling

Revision 1.3, June 2013 258

A mistracked bag occurs when commanded belt movements take place without error, but the corresponding bag
movement(s) do not complete as logically expected.

The CUSS platform and/or SBD device must halt all belt or mechanical movement in response to a
mistracked bag event, and comply with any additional local safety and security requirements in
effect.

A CUSS platform that includes an SBD device will need to:

• Determine what the mistracked bag requirements are for the SBD and attached baggage belt system
• If mistracked bag detection is needed, then correctly detect mistracked bag conditions and:

o Take any action as per local requirements
o Indicate the event to the CUSS application
o Monitor the mistracked condition until it is resolved (via manual intervention by staff or any

other mandated local process)
• Once resolved revert all SBD components back to the appropriate current status.

All processing for BAGGAGE_MISTRACKED should be considered a safety intrustion, and all requirements
for processing safety intrustions is as described above.

Likewise, the business logic behavior for an application responding to BAGGAGE_MISTRACKED would
probably be very similar as for handling a BAGGAGE_SAFETY_INTRUSION event.

Two additional events are similar to a mistracked bag. Generally speaking, platforms should detect (if possible)
and report these conditions, and applications should make a business logic decision to process the events, in a
fashion similar to BAGGAGE_MISTRACKED.

• BAGGAGE_UNEXPECTED_BAG - bag appeared without corresponding tracking request
• BAGGAGE_UNEXPECTED_BAG - bag abandoned at the end of a transaction (see below)
• BAGGAGE_UNDETECTED - bag disappeared without corresponding tracking input

7.17.4 Abandonned Bag and Session Cleanup requireme nts

For self bag drop operations, there is a risk that an in progress transaction will result in an abandoned bag. For
the purposes of the CUSS Technical Specification, an abandoned bag is:

Any bag that remains on or within the self bag drop device, when no CUSS airline application is in the
ACTIVE state, and which has not been accepted into direct control of the airport baggage system , is
considered an Abandoned Bag.

At the end of every CUSS application transaction, the CUSS platform shall verify the self bag drop device for
any abandoned bags, and shall report BAGGAGE_UNEXPECTED_BAG for any belt component that contains
an abandoned bag.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 259

If the transaction ends and there are no abandoned bags, but the application left the SBD in the enabled state,
then the platform will disable the insertion point on the device (closing physical barrier if present.)

Local airport requirements may impose specific requirements on the behaviour of the CUSS platform and
Common Launch Application when abandoned bags are detected. It is a CUSS platform implementation
requirement to be aware of and comply with any such requirement, including setting the kiosk out of service
and notifying airport staff.

It is possible that an SBD and/or airport belt system has a mechanism for forwarding and diverting abandoned
bags away from self bag drop positions automatically. It is acceptable for a CUSS platform and SBD to make
use of any such capability or mechanism as long as this process does not require additional business logic
within the tenant CUSS applications.

Once the abandoned bags have been removed or diverted (by manual intervention or automated mechanism) the
CUSS platform shall report the appropriate events (BAGGAGE_ABSENT, etc.)

If there are any local requirements that a Self Bag Drop position be set out of service, that local airport staff be
notified, or that any other specific action be taken in response to an abandoned bag, it is the platform provider’s
responsibility to implement those requirements.

The CUSS Technical Specification recommends that applications deployed in shared self bag drop systems
remain UNAVAILABLE in case of abandoned bags. However, it is a CUSS application business logic decision
whether to remain in the AVAILABLE state when abandoned/unexpected bags are reported by the platform
and, if activated in this state, how to carry out a transaction or recover the abandoned bags.

7.17.5 Receipt and Heavy Tag Printing

Please refer to section 6.4 for information on how specialty document printing, such as baggage receipts and
heavy tag printing, should be accomplished using the existing CUSS General Purpose Printer (GPP) capability
for SVG and PDF documents.

These specialty GPP printers will be their own component group and not linked to the SBD components.

In particular, if a CUSS kiosk supports heavy tag printing or baggage receipt printing as part of its self bag drop
device, the CUSS platform shall:

4. Include a GPP printer definition as set in Section 7.11 for each specialty printer
5. Ensure that the components’ Characteristics about paper size and orientation are accurate for each

printer
6. Include the characteristics keyword DS_TYPES_HEAVYTAG as part of a heavy tag printer

component’s Manufacturer.firmwareVersion setting.

As well, a kiosk provider shall publish information about the formatting and size requirements for their heavy
tag printer to all airlines deploying on the SBD kiosk. This is important because, at the time of publication of
this CUSS Technical Specification there is no industry standard for specialty/heavy tag printing.

Please refer to Appendix G for more information.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 260

7.17.6 Standard Operations, Behaviour, and Sequence Diagrams

This section attempts to document how the CUSS Technical Solution Groups expects CUSS platform and
application implementations to carry out common transaction tasks with self bag drop devices.

By providing examples, it is intended to answer many questions about the interpretation of the CUSS-SBD
specification and how to use it in practice, and by providing key aspects to be aware of for each case.

Detect of the SBD and attached airport baggage system are operating correctly

• As with all CUSS devices, it is an application business logic decision to monitor the condition of the
SBD device and set the application UNAVAILABLE or AVAILABLE in response to various device
conditions.

• Different SBD device with have different levels of equipment, capability, and error detection. When a
CUSS platform reports an error condition on an SBD, this reflects the inability of the local device to
function and does not merely mean, for example, that the airport belt is temporarily congested.

• The CUSS-SBD component group may include an optional BHS/BSM. If the platform includes this
component, that component’s status will indicate the condition of the airport belt system directly. If the
platform does not include this component, the remaining SBD components will change to an error state
if there is an outage in the airport system that prevents the SBD from functioning.

• Airport baggage systems are quite complex, with numerous levels of monitoring at the PLC level and

via SCADA systems. CUSS applications running on self bag drop kiosks are not directly involved in
this monitoring, and should instead focus on the errors reported directly by the CUSS platform.

• Many providers of bag processing equipment provide a granular state that is a de facto standard for
baggage equipment monitoring. For reference, here is how those states are represented by CUSS, if they
occur on equipment that directly influences the CUSS-SBD component(s):

Priority General State CUSS Status
1 Safety Stop BAGGAGE_EMERGENCY_STOP
2 Unknown/Comms Fault NOT_RESPONDING
3 Offline/Manual/Out of Service NOT_RESPONDING
4 Error HARDWARE_ERROR
5 Warning OK
6 Die-back OK
7 Stopped in Auto OK
8 Stopped OK
9 Starting OK
10 Energy Save OK
11 Redundancy OK

 Extended Device & Media Type Handling

Revision 1.3, June 2013 261

12 Full BAGGAGE_FULL
13 Started/Running/Enabled OK
14 Power Up HARDWARE_ERROR

 Extended Device & Media Type Handling

Revision 1.3, June 2013 262

Determine if there is room on the belts to start or continue processing

• Even if the SBD is operating without technical error, applications must still review the condition of each
belt processing component to at all times be aware of where bags are and if processing is available.

• The public bag capacity events reported for each belt component can be used to monitor the status of the
belts. In particular, the events BAGGAGE_ABSENT, BAGGAGE_PRESENT, BAGGAGE_FULL, and
BAGGAGE_UNEXPECTED_BAG are critical to determining room on the belt.

• Applications should be aware that some Self bag Drop devices support multiple bags simultaneously,
and in writing applications to fully support this capability careful monitoring of all status codes
(BAGGAGE_PRESENT vs. BAGGAGE_FULL, for example) is important.

• Depending on whether an application is idle, or how far along in the transaction the application is, there
may be different business logic in effect. For example, in some cases it makes sense to wait up to 60-90
seconds for a belt to become free, in others it might make sense to cancel a transaction already in
progress.

• Be aware that when the kiosk is idle or even at the start of a new airline application transaction, there
may still be bag(s) on the parking belt from a previous transaction. These bags are under airport belt
control and do not need to be processed by the new transaction, so there is no need to delay the
transaction until the parking belt is completely free.

• Always check for bag placement and belt status prior to doing forward() and backward() requests.

• Avoid ending a transaction and leaving unprocessed bags on the belt. Always try and direct passengers
to recover their bags and wait for this to happen, even if transactions are canceled. Bags abandoned at
the end of the transaction will likely put the kiosk out of service and require supervisor intervention.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 263

Enable the bag drop devices and monitor for user interference

• Different bag drop devices will have different capabilities. Review the barrierCapable,
backwardCapable and similar Characteristics to determine the type of device in use.

• To allow passengers to deposit bags on the device, always call the enable() directive as this is required
to activate a safety barrier, disable interference sensors, or other tasks required to prepare the physical
device. Once the bag is accepted, call disable() to prevent adding a second bag or interference with the
verification process.

• For similar reasons, when returning a bag back to the passenger (for a cancelled transaction or similar),
always use the offer() directive.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 264

• While processing bags, monitor the SBD components for BAGGAGE_INTERFERENCE_USER,
BAGGAGE_UNEXPECTED_CHANGE, and similar events that could indicate the passenger is trying
to manipulate the bag.

• The application should decide if it wants to cancel/restart process of the bag when user interference is
detected. Note that because user interference events are not related to safety and security, the platform
may not necessarily stop bag movement in response to these events.

• Usually there is no need to cancel a transaction when user interference is detected. Waiting for a certain
period of time for the passenger to cease the interference may be sufficient. However overall, how to
handle these events is always an application business logic decision.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 265

 Extended Device & Media Type Handling

Revision 1.3, June 2013 266

 Extended Device & Media Type Handling

Revision 1.3, June 2013 267

React to critical conditions like safety intrusions, emergency stops, and mistracked bags

• While processing bags, monitor the SBD components for BAGGAGE_INTRUSTION_SAFETY,
BAGGAGE_EMERGENCY_STOP, BAGGAGE_RESTLESS, BAGGAGE_MISTRACKED, and
similar critical error conditions. These events could indicate someone or something is in danger.

• Note that because these intrusion/security events are related to the ongoing safety and security of the
passenger and of the airport, the platform will automatically stop any bag or belt movement in response
to these events. There is no need for the application to do so (though there is no harm in making the
request.)

• Usually these conditions will only be resolved when a supervisor completes manual inspection of the
SBD and re-actives it, which may take a few minutes. Until that takes places the SBD device may
remain completely unavailable. For example, an emergency stop button must halt all belt movement and
no belts can move until the situation has been reviewed and the system recovered.

• In most cases, the application will need to abandon the transaction in progress when these events occur,
then go to UNAVAILABLE, and monitor the SBD components and return to the available state when
the situation has recovered.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 268

 Extended Device & Media Type Handling

Revision 1.3, June 2013 269

 Extended Device & Media Type Handling

Revision 1.3, June 2013 270

Keep track of when bags move from the SBD to the airport belt

• In order to move a bag onto the airport belt, the CUSS application will need to move a bag forward from
the insertion belt, to the verification belt, onto the parking belt, and finally to the airport belt.

• Even though each belt might support multiple bags, bags will procede through the SBD in sequential
(FIFO) fashion.

• While not all SBD devices will have three separate physical belts (many will only have one or two), the
CUSS-SBD interface will always include all three logical belts for processing, and the CUSS application
must interact with all three belt components.

• The CUSS platform will ensure that even if the kiosk is physically equipped only with a one or two-belt
self bag drop device, the device will logically be implemented with all three belts defined in this
technical specification.

• Generally speaking, CUSS applications should not require specific logic depending on whether the
physical SBD has one, two, or three physical belts, so long as the application is written to comply with
this CUSS-SBD standard.

• Make note of the Characteristics of each belt component. Some systems only allow forward bag
movement. Some systems allow for more than one bag per belt, particularly for the parking belt. It’s up
to the application business logic to detect and adapt to these situations to provide the best possible
transaction capability to its customers.

• Once a bag is on the parking belt it is usally ready to be promoted to the airport belt. Before asking to
move the bag on, however, the application will likely need to create or update a BSM message telling
the airport about the bag. If the optional BHS CUSS-SBD component that supports

 Extended Device & Media Type Handling

Revision 1.3, June 2013 271

DS_TYPES_RP1745 is present then the CUSS application can send a BSM directly with this
component. Any other appropriate or existing method to issue/update the BSM is also acceptable.

• To promote the bag, use the forward() directive with the appropriate timeout to move the bag onto the
airport belt. The response will either be BAGGAGE_DELIVERED if the bag is physically on the airport
belt, or BAGGAGE_ACCEPTED if it remains on the parking belt but is under the control of the airport
belt system (for example, waiting for a logical induction slot.)

• Once a bag is accepted, an application can continue processing more bags, or end the transaction and
return to the available state even if the bag is still on the parking belt. Once the parking belt is empty, the
application will receive a BAGGAGE_ABSENT event.

Check if bags have changed between the insertion and verification points

• The application can use the process() directive to tell the SBD to activate belt mechanisms to read and
send information about the bag to the application.

• Depending on the SBD, this process() directive will trigger different data for different belts. For
example, in some cases the scale device or barcode scanner might be activated on both the insertion belt
and the verification belt, and in others they may only be available on the verification belt.

• Applications should not be written to assume one way or another, and should look for
RC_NOT_SUPPORTED as a response to the process() directive on each belt.

• The platform will return data that can be read from the bag using distinct data components. Each one
will trigger a DATA_PRESENT (or DATA_MISSING) in response to the process() directive, as soon as
information is available:

o Weigh and Alibi number � scale component
o Dimensions � belt component
o Barcodes � barcode scanner component
o RFID tags � RFID reader component

• It is the application’s business logic and responsibility to compare values and detect if anything changed.

The platform will not decide this on behalf of the application.

• Depending on capabilities, some SBD devices may be able to detect changes using other methods, such
as advanced volumetrics or photoanalysis. In this case the application can process the
BAGGAGE_UNEXPECTED_CHANGE event.

• Depending on what change is detected, the application can decide to move the bag back (if the belt is
backwardCapable) and prompt the user to restart the process. Once a bag has successfully passed
verification, it can finally be moved to the parking belt. All these are application business logic choices.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 272

• The CUSS platform will ensure that even if the kiosk is physically equipped only with a one or two-belt
self bag drop device, the device will logically be implemented with all three belts defined in this
technical specification.

• Generally speaking, CUSS applications should not require specific logic depending on whether the
physical SBD has one, two, or three physical belts, so long as the application is written to comply with
this CUSS-SBD standard.

• Make note of the Characteristics of each belt component. Some systems only allow forward bag
movement. Some systems allow for more than one bag per belt, particularly for the parking belt. It’s up
to the application business logic to detect and adapt to these situations to provide the best possible
transaction capability to its customers.

Handling a mistracked or unexpected bag condition, or an error promoting a bag to the airport belt

• Mistracked bags and unexpected bags are usually critical errors, and the application will not be able to

complete the transaction. They should be processed similar to a critical error like a restless bag or an
emergency stop.

An example of end-to-end process of a single bag successfully without abnormal conditions

• It is anticipated that a main priority of airline self bag drop applications is to ensure that a successful bag
drop can take place quickly and without error, in a fashion that is intuitive to the passenger.

• Aside from the conditions above, what is considered a critical error, temporary error, or insignificant

condition is the business logic choice of an application. For example, and application that does not
charge by bag weight might not care if the weight changed slightly at the verification point.

• It is an application business logic decision whether or not to (re)print tags at the self bag drop, whether
to print heavy tags, the maximum number of bags to process for a customer, to calculate allowances by
weight, piece, or pool concepts, and any similar tasks and responsibilities of airline baggage acceptance.

• The CUSS platform and SBD will not dictate or impose any of these rules, except for aspects required
for local integration, such as Health & Stafety weight and size limits.

• For a sample sequence diagram, see the “Typical sequence” example at the start of this section.

The passenger decides to cancel the transaction mid process

• A customer might abandon a transaction mid way through (walk away or be distracted), or might choose
to explicitly cancel a transaction for various reasons (unanticipated bag fees, repack, etc.)

 Extended Device & Media Type Handling

Revision 1.3, June 2013 273

• A transaction might need to be cancelled as a result of a business rule as well, such as a failed payment
transaction, weight or size issues, or a change in the flight status.

• It is an application business logic requirement to properly “unwind” the transaction as the result
of a transaction cancellation. This includes moving bags back to the insertion point (if supported),
offering the bag back to the customer, using visual and audia prompts to get the attention of the user,
and similar.

• It is very important that applications try to avoid any case the results in an abandoned bag, as described
in a previous section, as this may cause the self bag drop device to be out of service until a supervisor is
able to recover the abandoned bags.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 274

7.18 Independent Baggage Scale

Description of Device:

For CUSS kiosks providing baggage tag printing only, the BaggageScale interface can be used to weigh a bag for
registering baggage with the DCS system (and to encode weight information on the baggage tag if necessary).

A BaggageScale does not convey baggage in any form. For baggage scales included in Integrated Baggage Conveyors,
see Section 7.16. A kiosk may be connected to a Baggage Scale and an Integrated Baggage Conveyor at the same time.

A separatate component definition is needed for simple baggage scales, as the Self Bag Drop extension for AEA used by
the Integrated Conveyor System components, does not support scale-only devices as of AEA2012-2.

Important Note: This component definition replaces the Conveyor component definition included in CUSS-TS

1.2. As of CUSS 1.3, the previous Conveyor interface is deprecated (targeted for removal in a
future release) even though it remains in the IDL files.

Virtual Component Linking Diagram:

Distinct Characteristics:

BaggageScale
Characteristic Value
Manufacturer.FirmwareVersion This will include the indicator DS_TYPES_WEIGHT to confirm

the device represents a dedicated scale. This indicates weight
information will be conveyed in accordance with the
CUSS.SBD.XSD messaging schema.

Distinct Status Conditions:

Code Meaning
BAGGAGE_ABSENT No item is on the scale and the scale is stable at its zero.

BAGGAGE_PRESENT There is an item on the scale and a stable weight has not
yet been read

BAGGAGE_WEIGHT_OUT_OF_RANGE An item is on the scale but its weight is above or below
the limit that can be read by the scale.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 275

DATA_PRESENT There is an item on the scale and a stable weight (and
alibi number, if applicable) is available.

7.18.1 Device Component Interface Directives Extens ions

This chapter defines the relation between new status codes and the baggage scale virtual component directives.
The relations of the standard CUSS status codes remain as they are defined in chapter [Device Component
Interface (DCI) Directives].

Virtual Component Type: BaggageScale
Status Code

acquire()

cancel()

disable
()

query
()

test()

setup
()

release
()

BAGGAGE_ABSENT X X X
BAGGAGE_PRESENT X X X
BAGGAGE_WEIGHT_OUT_OF_RANGE X X X

The CUSS platform shall respond BAGGAGE_ABSENT instead of OK to query() requests when no bag is
present and no other error condition is detected.

Notwithstanding the above requirement for CUSS platforms, for compatibility reasons it is recommended that
CUSS applications should accept and interpret OK and BAGGAGE_ABSENT as equivalent.

BAGGAGE_ABSENT and BAGGAGE_PRESENT are _public events.

7.18.2 Data Format (DS_TYPES_WEIGHT)

The BaggageScale component derives from the DataInput component, and delivers the weight information as
part of the BAGGAGE_RESTLESS, BAGGAGE_PRESENT and BAGGAGE_ABSENT events, using a CUSS
msgDataType with a single dataRecord.

The DataInput component for the scale delivers its data in a CUSS msgDataType with a single dataRecord in it.
Regardless of the reporting units or precision of the scale component, the platform must convert (if needed) and
report the weight in metric grams. A weight of 0 grams is a valid weight.

Format specification
and example data:

msgDataType.records[0] XML message [CUSS.SBD.XSD]

<?xml version="1.0" encoding="UTF-8"?>
<baggageData xmlns="urn:CUSS-1.3/types/conveyorInterface"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <dimension>
 <load>
 <weight>18000180001800018000</weight>
 <alibi>
 <value>0123456789012345678901234567890123456789----ABCDEFABCDEFABCDEFABCDEF</value>
 </alibi>

 Extended Device & Media Type Handling

Revision 1.3, June 2013 276

 <stable>truetruetruetrue</stable>
 </load>
 </dimension>
</baggageData>

The component may report a 0 or non-zero weight in a BAGGAGE_ABSENT condition, depending on local
regulations and calibration of the scale. For example, some jurisdictions may require that weights under a
certain threshold be omitted.

As part of commercial Weights & Measures regulations, some jurisdiction require that scales used for
commercial transactions also provide a measurement tracking reconciliation number, sometimes called an alibi
number, along with the measurement value.

If the scale and location require the use of alibi numbers, it is a platform requirement to provide the alibi
reference to the application. If provided, the alibi number must be included in the appropriate field of the XML
message reported to the application, as defined in CUSS.SBD.XSD.

It is a platform implementation choice and task to determine how to generate, obtain, and track/audit weights
and alibi numbers, and all other aspects of compliance with local or Weights & Measures requirements relating
to alibi numbers.

It is an application business logic decision to detect and properly use alibi numbers provided by the CUSS
platform. Usage requirements and alibi number syntax may vary from location to location, and cannot be
described by the CUSS Technical Standard.

If a scale is able to detect unstable weight conditions, this condition shall be reported to the application as a
BAGGAGE_PRESENT event, which will not include any weight value. In this case, as the weight changes over
time, the expected sequence of events is:

 BAGGAGE_ABSENT (no bag)
 BAGGAGE_PRESENT (unstable weight)
 DATA_PRESENT (stable bag)
 BAGGAGE_PRESENT (bag unstable during adjustment or item added/removed)
 DATA_PRESENT (stable bag)
 BAGGAGE_PRESENT (bag unstable during removal)
 BAGGAGE_ABSENT (no bag)

The CUSS technical specification does not require that scale be able to report unstable weights. A scale that
cannot detect unstable weight conditions but always reports a live weight, may not broadcast the the
BAGGAGE_PRESENT condition and would instead immediately report DATA_PRESENT.

 BAGGAGE_ABSENT (no bag)
 DATA_PRESENT (live weight of unstable bag)
 DATA_PRESENT (stable bag)
 DATA_PRESENT (live weight of unstable bag during adjustment or item added/removed)
 DATA_PRESENT (stable bag)
 DATA_PRESENT (live weight of unstable bag during removal)
 BAGGAGE_ABSENT (no bag)

 Extended Device & Media Type Handling

Revision 1.3, June 2013 277

Some CUSS platforms may choose to simulate the detection of unstable weight by providing
BAGGAGE_PRESENT immediately prior to the DATA_PRESENT in the above scenario.

Applications using the scale interface should accommodate either situation as part of the scale transaction
business logic. Applications should also be able to accommodate situations where the scale reports many weight
values in a row during instability while the weight is changing.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 278

7.18.3 Typical Sequence Diagram

 Extended Device & Media Type Handling

Revision 1.3, June 2013 279

7.19 Generic Payment Device

Description of Device:

The Payment Device Interface is added to CUSS 1.3 as an optional kiosk component. As the industry moves
away from payment transactions based on magnetic cards, these transactions are now designed to be carried
out via a “Generic Payment Device”.

CUSS 1.3 kiosks and this technical specification st ill provide a magnetic card reader interface that c an
be used directly for payment transactions and for F OID transactions.

The goal of a generic payment device is that the kiosk contains a “black box” payment device (such as a Chip
& PIN terminal, for example) that carries out a payment transaction basic on input from the application (such as
the amount of the transaction) without exposing sensitive payment data to the CUSS platform or application.

The Generic Payment Interface allows these types of transactions:

1. Authorization with automatic commit
2. Authorization with manual commit
3. Authorization with manual cancel
4. Pre-authorization with final amount post-authorization
5. Pre-authorization with manual cancel

The Generic Payment Interface has these primary design goals:

1. Allow generic payment transactions such as EMV/chip & PIN in the modes listed above
2. Define an interface that also allows non-payment FOID magnetic cards to be read
3. Complete payment without exposing the application to any sensitive payment information
4. Allow the application to provide extended billing information for tracking and reconciliation
5. Use a flexible XML messaging format for exchanging payment transaction information
6. Include the flexibility needed to be deployed to kiosks with an existing proprietary interface
7. Defer receipt printing requirements to the application to aid in compliance and certification
8. The interface supports shared systems payment models that are to be deployed to CUSS systems

(including payment aggregators, multi-merchant multi-acquirer solutions, and any other viable
technical solution.)

Important Notices:

The CUSS Technical Specification defines only the interface between the application and the CUSS
platform. It does not describe or recommend how the platform should select and integrate components
of a Payment Solution Provider to implement the interface.

The payment interface allows payment transactions t o complete without any sensitive payment
information being provided to the application.

The intent of the interface is that platforms must not, under any circumstance, provide sensitive
payment information to the CUSS application using a ny feature of the payment messaging
scheme.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 280

In particular, this standard does not list, recommend, or endorse any particular payment hardware or
payment solution components that meet the requirements of the interface, nor does it imply that such
components would meet “shared payment solution” requirements off-the-shelf without modification.

Thus it is up to the platform supplier to select, modify (if needed) and integrate the payment solution
components as required for their CUSS deployment, and to modify their CUSS platform to provide this
Payment Interface to the application in order to use and control the selected payment solution.

Virtual Component Linking Diagram:

Description of Virtual Component Linkage:

The Generic Payment Device consists of a single UserOutput virtual component representing the payment
device. It may also have a single MediaInput device representing the magnetic card reader integrated with the
generic payment device (which could be used as the non-payment card reader on the kiosk.)

The component can be uniquely identified on a kiosk using the Distinct Characteristics listed below. The
RealComponentName will contain “EPayment”.

Important Notice:
The CUSS Technical Specification allows a single component to provide payment capabilities, as well
as generic (FOID and non-payment) magnetic card reading capabilities. This interface is defined with
the optional MediaInput component listed above, in addition to the UserOutput component used for the
payment interface.

However, the CUSS Technical Specification defines only the interface between the application and the
CUSS platform, and does not list or endorse any particular PSP components that allow this behavior. It
does not describe or recommend how the platform should select and integrate components of a
Payment Solution Provider to implement the interface.

This it is a platform supplier responsibility to investigate and implement this as needed to correctly
expose the defined CUSS payment and card reader interfaces. It is possible that the PSP would need
to modify or customize their payment terminal to allow the multi-function behavior.

Distinct Characteristics:

The following component types and characteristics can be used to uniquely identify the component
representing the Generic Payment Device, amount the list of all device components on the kiosk.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 281

Characteristic Value
Component type UserOutput
Manufacturer.FirmwareVersion Contains the string reference DS_TYPES_EPAYMENT
Manufacturer.FirmwareVersion Will also contain a capabilities message formatted in XML in

accordance with schema CUSS.PAYMENT.XSD.

7.19.1 Data Formats

The following sections describe the data formats to be received or sent to the components of the generic
payment device. The basic data format for all data shall be a string (msgDataType) allowing the transmission of
XML formatted data structures.

The Generic Payment Device is defined by a single UserOutput component that supports setup() and send()
requests from the application, and which can generate custom asynchronous events. The data payload for these
requests and events is the standard CUSS msgDataType with the appropriate number dataRecords in it.

The content of each msgDataType record shall be a properly-format XML message corresponding to the
schema below and containing the correct XML data for the type of request and transaction the application needs
to carry out. The schema is defined by the file CUSS.PAYMENT.XSD.

7.19.2 Application Responsibilities

A complete self-service payment transaction requires many steps. To be clear on certain responsibilities and
capabilities, here is some high level guidance on what CUSS applications need do during a payment
transaction:

• As part of the setup() request, applications can suggest which card brands to accept, such as VISA,
Mastercard, or American Express. The payment solution may or not be able to honour that request,
depending on system capabilities. The component characteristics will indicate which card brands can
be selected.

• As part of the setup() request, applications can suggest which payment media types to accept, such as
magnetic card, EMV, or contactless. The payment solution may or may not be able to honour that
request, depending on system capabilities. The component characteristics will indicate which media
types can be selected.

• The application cannot request to restrict payment only to Debit or Credit payment card methods.

• It is the application’s responsibility to print any required receipts and/or invoices using the other printers

available on the kiosk. Because the CUSS application cannot rely on the presence of a receipt printer
within the payment device it must print the payment receipt using the existing CUSS kiosk printer
interfaces, based on the receipt data provided by the CUSS payment interface transaction response.
The application is responsible for printing because the application typically:

 Extended Device & Media Type Handling

Revision 1.3, June 2013 282

o Owns the payment process requirements, including generating receipts
o Is aware of any airline-specific receipt requirements
o Makes the decision of whether a transaction can continue if receipt printing fails
o Controls the kiosk screen and provides instructions during the entire transaction
o Is ultimately responsible for all aspects of the payment transaction and the end to end customer

experience and post-transaction support, including receipts

• The application cannot issue transaction reversals or chargebacks from the kiosk (the platform
may automatically perform immediate reversals at time of payment, if the application or payment device
encounters an error.)

• Because the CUSS platform must not provide any unmasked or other sensitive payment data to

the application, the application payment processing cannot expect to retrieve the unmasked
payment data as part of a payment transaction via any method whatsoever.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 283

7.19.3 Sequence Diagrams

Typical Sequence Diagram for Payment Device:

The directives for the UserOutput component follows the normal CUSS purpose of component directives.

• Review the device Characteristics and firmwareVersion to determine capabilities.

• acquire() and release() to gain overall access to the component and set up an event listener

• setup() for the application to obtain the Characteristics XML message for the device.

• setup() for the application to set the component context. The setup data stream must contain an XML
message formatted in accordance with the DS_TYPES_EPAYMENT message schema, as defined by
the interface file CUSS.PAYMENT.XSD.

• The application must call setup() while in the ACTIVE state prior to requesting a payment transaction.

o As per Section 6.2.1, the configuration provided via the setup() call is in effect until the

application returns to the AVAILABLE state, or another call to setup() is made, whichever comes
first.

• enable() and disable() to control when the device is ready for use by the customer. This may be

required for some types of devices that require explicit activation, but may not have any effect on other
devices.

• send() to provide the platform with the terms of the payment transaction and basic itinerary information.
The send data stream must contain an XML message formatted in accordance with the
DS_TYPES_EPAYMENT message schema, as defined by the interface file CUSS.PAYMENT.XSD.

• The application will need to carry out a payment transaction using one of the payment models
supported by the schema:

o Payment Authorization with automatic Commit
o Payment Authorization with manual Commit or Cancellation
o Payment Pre-authorization and Post-Authorization or Cancellation (two-phase)

• The platform will broadcast DATA_PRESENT events to the application’s device listener for the

payment component, containing an XML message formatted in accordance with the
DS_TYPES_EPAYMENT message schema, as defined by the interface file CUSS.PAYMENT.XSD,
with information on the progress of the transaction (payment terminal screen messages.)

• cancel() allows an application to request that the current send() request be ended. The platform
response to the cancel() request indicates only the status of the cancel request, not whether the
transaction was cancelled. To determine if the transaction was in fact cancelled, verify the response to
the send() request.

• query() and test() allow the application to verify the condition of the device at any time, including the
state of the component and the health of the payment subsystem

 Extended Device & Media Type Handling

Revision 1.3, June 2013 284

 Extended Device & Media Type Handling

Revision 1.3, June 2013 285

 Extended Device & Media Type Handling

Revision 1.3, June 2013 286

 Extended Device & Media Type Handling

Revision 1.3, June 2013 287

 Extended Device & Media Type Handling

Revision 1.3, June 2013 288

 Extended Device & Media Type Handling

Revision 1.3, June 2013 289

 Extended Device & Media Type Handling

Revision 1.3, June 2013 290

 Extended Device & Media Type Handling

Revision 1.3, June 2013 291

7.19.4 Explanation of Schema Fields

Here are some clarifications as to the purposes of some message fields defined in the schema.

A CUSS platform must not include any sensitive paym ent information (in scope for PCI-DSS) in any of
the fields/data provided to the CUSS application.

1. merchant-id

The merchant ID in the CUSS schema is not the same technical value as the mechant ID used
by the Payment Service Provider. In CUSS, this optional value lets a CUSS application provide
an indicator about which company or provider is to receive the funds for the transaction.

� The CUSS application provider will need to indicate the list of valid merchant IDs that an

application may request at time of payment.
� The CUSS platform will likely do an internal mapping of application requestvalues, to

values cuitable for the platform’s payment solution.
� The CUSS platform will likely validate and filter the merchant-id in transaction requests

from the CUSS application.
� If no value is specified, the platform will use an appropriate value (as set up during initial

deployment of payment capabilities) for the transaction based on the companyCode
value of the CUSS application making the transaction request.

� This field is most likely to be used within applications that process transactions for
multiple entities, such as ground handling or generic airport applications.

2. feature-list

This characteristic indicates what modes of payment are supported by the payment terminal.
The application requests a particular mode of payment in its setup() request parameters.

� The auto-commit feature indicates whether or not the application wishes to permorm a
manual commit at the end of a successful transaction.

� The pre-authorization feature indicates whether the pre-authorization/post-authorization
payment model is supported

3. card-brand-list

This characteristic lists all the card brands that can be accepted for payment at this terminal.
The application can restrict these types via setup() if the overridable attribute is true.

� The card-brand values shall match the values used in IATA Resolution 728 (note in
particular the use of “CA” for Mastercard in this Resolution)

4. media-type-list

This characteristic lists all media types that the payment terminal is able to accept. The
application can restrict these types via setup() if the overridable attribute is true.

� The media-type values are as restricted in the XSD, being at time of publication one of:
• icc
• mag-stripe
• contactless

 Extended Device & Media Type Handling

Revision 1.3, June 2013 292

5. currency-code-list

This characteristic lists all currency codes that the payment terminal is able to select. An
application must indicate one of these codes when making a request for a payment transaction.

� The currency-code values shall match the currency codes defined by ISO4217 but shall
not be case sensitive.

6. overridable

This attribute indicates if the payment feature, such as card-brand, can be overridden by the
application using a setup() request.

7. environment

The values in the environment block are optional, and allow the CUSS application to indicate
more specific values related to the payment transaction, for tracking and reconciliation
purposes.

� If the CUSS application does not supply any values, the CUSS platform may provide
appropriate values to the payment subsystem depending on what data fields that
subsystem requires.

8. epayment-msg-id

This value is an arbitrary tracking value that the CUSS application chooses and assigns when
starting a payment transaction. The CUSS platform must then echo this requested value in all
subsequent responses or asynchronous event messages related to that payment transaction.

� This approach is to permit a CUSS application architecture that matches and associates
messages.

� This capability is critical for the potential case where an application has more than one
multi-step payment transaction (manual ack, or auth/hold/commit) ongoing at once.

9. transaction-request-language

This is an optional value that lets the CUSS application suggest a language to use when
performing the payment transaction. The payment subsystem could use this value to adjust
prompts displayed on the payment terminal screen or the language on the preformatted receipt
data.

� This value could be set in response to a prior language selection by the kiosk application

user as part of the overall kiosk transaction.
� The payment system may override this setting once a language value is read from the

card itself as part of the transaction.

10. itinerary

The information in the itinerary block is optional, and lets the CUSS application specific
additional tracking and reconciliation data for the payment transaction, relating specifically to an
airline transaction itinerary.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 293

� The CUSS platform provider may mandate that this information be provided with all
transactions. This requirement will be established during the negotiation and
configuration phase of the initial deployment of payment capability for an airline.

� It is anticipated that the CUSS platform itself will not store or make use of this
information. Instead, it will be forwarded to the aggregator, refund, and tracking
components of a common use payment solution infrastructure.

11. billing-description

This optional value lets the CUSS application suggest a value that will appear on the kiosk
application user’s payment summary (monthly bill, etc.) as an extended description of the
transaction.

� The value may or may not appear on the customer’s bill depending on the capabilities of
the airport and customer’s banking systems.

� Long data may be truncated
� The platform may also be used as an additional tracking mechanism for other systems

such as aggregator and reconciliation infrastructure

12. reference

This optional value allows the CUSS application to specify and to receive arbitrary reference or
reconciliation data from the payment interface.

� How this is used will vary from provider to provider and is likely related to the aggrement
the application supplier has with their acquiring bank or payment aggregator.

13. approval

This element describes the specific information provided as response to an approved payment
transaction.

� An application may use this information as it decides
� No sensitive payment information shall be provided in this information
� Various data elements, such as cryptogram, may be required by some application

providers for proper payment processing and reconciliation

14. form-of-payment-id

This element is a identifier that references the payment transaction uniquely across all card
brands, and can be used by airline applications for reconciliation, tracking and refund purposes.

� It may or not be available, depending on the capabilities and software version of the
payment solution used

15. non-approval

This element describes the specific reason a transaction was not approved.

� The non-approval-reason-code and referral values are not standard and will vary
between payment systems

 Extended Device & Media Type Handling

Revision 1.3, June 2013 294

� These values are likely useful for logging and reconciliation purposes, and would not
likely be exposed to the kiosk user or affect the business logic of the kiosk transaction.

16. receipt-data

This element provides pre-formatted receipt data that is the application’s responsibility to print.
The data format is in raw text including line feeds, and may be encoded as a CDATA element.

� It is an application business logic decision, and potentially a bank certification
requirement, to properly format and print this data on a document for the customer.

� Key data elements used on the receipt are also proved separately under the approval
response.

17. transaction-document-return-type

This attribute of the transaction field indicates the type of follow up message that the payment
system expects. In particular, this is used to indicate if the application must send a transaction-
ack message to consume an authorized transaction amount.

18. gp-parameter-list

This is a list of special or proprietary payment parameters that can be provided by the CUSS
application when requesting the payment, and returned by the payment subsystem upon
conclusion of the transaction. These are optional values.

� This mechanism is included in the schema to allow certain legacy payment protocols to

be migrated to use the new CUSS 1.3 payment interface
� It is also included to allow for flexibility for future payment industry requirements that may

affect common use or airline payment.

7.19.5 Example Schema Messages

The examples shown in this section may not accurately reflect the most recent version of the
CUSS.PAYMENT.XSD. Always refer to the schema definition for message creation and validation.

Obtain Characteristics and Capabilities (applicatio n INITIALIZE)

By reading the XML message contents of the CUSS payment component’s firmwareVersion field,
review the capabilities of the application.

Sample platform firmwareVersion characteristics message:

 Extended Device & Media Type Handling

Revision 1.3, June 2013 295

 Extended Device & Media Type Handling

Revision 1.3, June 2013 296

Configure to only accept certain types of payment (application INITIALIZE/ACTIVE setup() request)

Request that the platform restrict the types of payment that are accepted. Depending on the technical
capabilities of the solution, the platform may or may not be able to honour the request.

Sample application request message:

 Extended Device & Media Type Handling

Revision 1.3, June 2013 297

Submit a payment request for an immediate transacti on (application ACTIVE send() request)

Request that the terminal carry out a payment transaction and immediately commit the transaction once
the payment is complete.

Sample application request message:

 Extended Device & Media Type Handling

Revision 1.3, June 2013 298

Submit a payment hold for an amount to be confirmed later (application ACTIVE send() request)

The application, in anticipation of an unknown final amount, requested preauthorization of transaction
amount.

Sample application request message:

Track the progress of the payment transaction (appl ication ACTIVE status DATA_PRESENT events)

The platform will send progress updates for the transaction based on prompts provided to the user, via
unsolicited status messages:

Sample platform asynchronous status messages:

 Extended Device & Media Type Handling

Revision 1.3, June 2013 299

 Extended Device & Media Type Handling

Revision 1.3, June 2013 300

Receive the Approval for a successful payment trans action (response to send() request)

The platform will send progress updates for the transaction based on prompts provided to the user, via
unsolicited status messages:

Sample platform response message:

 Extended Device & Media Type Handling

Revision 1.3, June 2013 301

Receive a Decline for a rejected payment transactio n (response to send() request)

The platform will send progress updates for the transaction based on prompts provided to the user, via
unsolicited status messages:

Sample platform response message:

Confirm/Ack the consumption of the approved amount (application ACTIVE send() request)

The application confirms the consumption/use of the approved amountThe platform will send progress
updates for the transaction based on prompts provided to the user, via unsolicited status messages.
The epayment-msg-id can be used to associate the acknowledgement with a previous request.:

Sample application request message:

 Extended Device & Media Type Handling

Revision 1.3, June 2013 302

Finalize a transaction amount after a pre-authoriza tion (application ACTIVE send() request)

Having a successful pre-authorization on hand, post-authorize and consume an amount less than or
equal to the preauthorization amount.

Sample application request message:

 Extended Device & Media Type Handling

Revision 1.3, June 2013 303

7.19.6 Non-Payment Magnetic Card Support

To support a generic payment interface, a kiosk enclosure will need a card reader to perform payment
transactions.

To support traditional magnetic card transactions such as form of identification (FOID), and legacy payment
transactions that do not use the generic payment interface, a kiosk enclosure will need a card reader that can
read raw payment and FOID track data.

The CUSS Technical Specification has not removed su pport for generic card reading in version 1.3,
and there is no explicit timeline in place to remov e this capability in the future.

However, for reasons of customer usability and ease of use, as well as simplified kiosk enclosure
design and certification, it is desirable to have a single physical card reader that accomplishes both
tasks.

Some kiosk enclosures will not be able to meet this goal, and will be deployed with two physical card readers.
In this case, the CUSS platform will present two interfaces:

• A generic payment interface as defined in this section which does not include a MediaInput component

• A direct card reader interface for FOID and legacy payment transactions, configured as defined in
Section 7.7 or 7.8

Other kiosks enclosures will incorporate a single card reader that can serve both purposes. In this case, the
CUSS platform will present a combined interface:

• A generic payment interface as defined in this section which also includes a MediaInput component

• There will be no separate card reader components

• The MediaInput component of the generic payment device will behave as described in Section 7.8

• Existing applications will continue to be able to find and use the direct card reader interface using the
mechanisms described in Section 7.8, without change, including FOID, DISCRETIONARY, and
PAYMENT modes.

There are some special CUSS platform considerations when running a combined purpose single card reader:

• The payment solution provider and payment terminal provider may need to deploy specialized software
or configuration in order to read cards as described in Section 7.8.

• The generic card reader feature must implement the FOID, DISCRETIONARY and PAYMENT
detection and truncation rules as described within this specification.

• For PCI-DSS scope reasons, it may be preferable to have these rules implemented in the certified
payment terminal software.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 304

• There may be additional certification requirements to deploy these changes to the payment terminal

and card reader controller.

• The platform must ensure that generic card reader, and generic payment transactions cannot operate
at the same time, by preventing applications from calling enable() on both components at the same
time.

• If a kiosk enclosure includes a single card reader device for both purposes that is motorized then
instead of a single MediaInput component, it shall be represented by the correct multiple components
defined in Section 7.7 for a motorized reader.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 305

7.20 RFID and e-Passport Readers

Description of Device:

The CUSS Technical Specification 1.3 does not include any control interfaces for RFID-capable e-Passport
readers.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 306

7.21 Accessible Kiosk Interfaces

Description of Device:

The CUSS Technical Specification 1.3 does not define any interface to allow facilitating devices on Accessible
Kiosks, such as navigation keypads, audio feedback and headset control.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 307

Ch 8: FOID and Payment Card Handling

This chapter is based on the CUSS FOID Addendum published by IATA in June 2011. All CUSS systems,
regardless of version of the CUSS Technical Specification, must have implemented the CUSS FOID Addendum
on or after June 30th 2012 to remain CUSS-compliant.

The separate CUSS FOID Addendum document applies to all CUSS 1.0, CUSS 1.1 and CUSS 1.2
implementations. This CUSS 1.3 Technical Specification chapter supersedes the CUSS FOID Addendum
document for all CUSS 1.3 site implementations.

8.1 Introduction and Summary

This chapter defines how the CUSS specification restricts how CUSS applications read payment card
data from the kiosk. Card issuer operational regulations state:

A Merchant must not request or use an Account Number for any purpose other than as
payment for goods and services.

The CUSS 1.3 separates access to card data between two types. First, CUSS applications retain full
access to the card data in cases where it is needed for payment processing. Second, for all card
transactions that are not for payment, the content of the payment card is truncated (obscured) so that
it retains essentially information such as the name, but no longer has an Account Number and is
hence not considered a payment card.

This change to the CUSS specification is critical f or card issuers, as a condition
for continuing to accept payments at airline self-s ervice kiosks. As stated in the
amended IATA Recommended Practice RP1706c, all CUSS 1.0, CUSS 1.1 and
CUSS 1.2 must implement the changes described in th e original CUSS FOID
Addendum by June 30 th, 2012.

All CUSS 1.3 sites, whenever they are deployed, mus t abide by the terms if this
chapter, which is a superset of the original CUSS F OID Addendum guidance.

The CUSS Technical Specification is changed to:

• Define detection rules to identify when a card read at a kiosk is a payment card
• Define data modification rules to indicate how card track data is truncated to remove

sensitive data
• Add new Extended Media Types that applications must use to access full payment card

data

 Extended Device & Media Type Handling

Revision 1.3, June 2013 308

• Change the default behaviour of the existing card ISO data type to return truncated
payment card data

• Set a date, via IATA RP1706c, by which time this Addendum must be deployed in order for
a CUSS site to comply with the industry Recommended Practice

The CUSS Technical Specifications changes allow existing CUSS applications to continue to operate
and read cards without requiring any applications changes. However, unless modified to support
these changes, CUSS applications will not have access to full payment card data and will not be able
to process payments based on magnetic cards – the platform will only provide truncated card data.

8.2 Definitions and Goals

CUSS self-service kiosk applications use magnetic card track data for two types of operation:

1. Extract name and account number to perform a financial payment transaction

2. Read card information to use as part of a transaction that is not financial. Typically, this

includes using a magnetic card as a form of identification and other tasks, such as Frequent
Traveler number transactions.

In short, the two types of transaction are PAYMENT transactions , and all other transactions (for
brevity, all non-payment transactions) are considered “form of identification”, or FOID transactions .
During a payment transaction, a CUSS application reads, processes and transmits the Payment
Account Number (PAN) data, and is subject to data security controls including provisions of the PCI-
DSS (Payment Card Industry – Data Security Standard).

This chapter is a mandatory component of the CUSS Technical Specification 1.3 for card reader
components, in order to abide by Card Brands Operating Regulations (regarding FOID not using
PAN) and facilitate data security compliance efforts for CUSS platforms and applications. The specific
goals of the change are to:

1. Separate card reader data read requests into two separate types. One specific request for
access to payment data, and a different request for FOID. This defines access to payment
card data as a separate, intentional request in the CUSS platform.

2. Allow CUSS platforms and CUSS applications to separate and modularize the card reading
logic within their application architecture, which can isolate payment data protection to more
specified, well-defined “need to know” areas and transactions into specific & isolated software
components.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 309

3. Remove all sensitive payment information from card data sent to CUSS applications for FOID
transactions. This data truncation prevents any exposure to sensitive payment data in those
parts of the application that perform FOID card transactions.

4. Establish a firm cutover date by which all CUSS platforms must implement this chapter in order
to remain compliant with the CUSS Technical Specification, including retroactive compliance
with CUSS-TS 1.0, 1.1 and 1.2. CUSS applications which perform payment transactions using
the card reader must also implement the change in this chapter by the cutover data, to
continue processing payment. CUSS applications that do not change will no longer have
access to payment card data.

Scenario without this Chapter:

Every CUSS application that activates and reads magnetic cards, for whatever purpose,
always receives full card data for every request, including sensitive payment card data.

Hence any CUSS application that uses magnetic cards in any form is subject to PCI-DSS,
whether or not payments are processed.

For this reason, full PCI-compliance of the common use kiosk solution extends beyond the
platform and includes the necessary compliance of each CUSS application running on the
kiosk as well as any/all network segments or appliances, be it over shared or private networks.

Scenario with the changes in this Chapter:

CUSS applications can continue using magnetic cards, but all sensitive payment data is first
truncated by the CUSS platform.

Applications that still do need the payment data must now make an explicit request to the
platform. In turn, the platform can decide whether or not a request for payment data is
honoured, without affecting other card transactions or applications.

This allows application and platform providers much better control (in architecture, as well as
operationally) over access to payment card data on a “need to know” basis.

This helps define more accurately the scope of PCI-DSS as it relates to the common use kiosk
and assists with limiting the compliance efforts to a smaller subset (or PCI footprint) of specific
payment components.

This chapter applies to all card reader input (read) devices, including dip, swipe and motorized
readers, as well as the reader component of card encoders. It does not affect other input or output
devices, such as passport or barcode scanners, or card writer interfaces.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 310

8.3 Payment Data Card Definition

This chapter addresses only the following specific industry payment card formats:

1. Magnetic cards encoded in accordance with the ISO/IEC 7811 Identification cards —
Recording technique with track data in accordance with ISO/IEC 7813 Identification cards -
- Financial transaction cards

2. JIS-I magnetic stripe on back of card with data format equivalent to ISO/IEC 7813

3. Magnetic encoding in accordance with ANSI X4.16

4. JIS-II magnetic stripe on front of card, as defined by JIS X 6302 Type 2

The goal of this chapter is to redefine how CUSS applications access the complete track data for
standard magnetic payment cards. This data is considered sensitive under PCI-DSS and other data
security guidelines. These changes make compliance efforts for CUSS platforms and CUSS
applications easier, by:

1. Separating access to magnetic card data into two distinct types: full access for payment
purposes, and access for purposes of identification and other non-payment transactions. This
allows segregated access on a “need to know” bases within CUSS applications that read
cards.

2. This segregation allows modularization with the CUSS applications and platforms which allows
the access to the full payment card to be isolated within dedicated modules. These isolated
modules can then be specifically controlled within the scope of PCI-DSS, while other non-
payment modules fall out of scope.

3. Different access methods for payment and non-payment card data access allows a CUSS
application to completely opt out of receiving sensitive data , yet still process cards (such
as Frequent Traveller cards, or payment cards for identification purposes only.) Likewise, it
provides a mechanism for CUSS platforms to restrict or deny access to payment card data
(without affecting access to non-payment data), providing more control over the security and
data exposure on the kiosks.

With these three key points, the changes to the CUSS Technical Specification allow CUSS
application and platform providers to better control how sensitive payment card data is accessed on
the kiosk, without affecting other magnetic card processing. This helps properly define and limit what
is in scope for PCI-DSS compliance and other security measures.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 311

The table on the next page indicates the sensitive data that occurs in payment card track data, as
defined in ISO/IEC 7813 Identification cards -- Financial tran saction cards or the ANSI X4.16
standard . For more information on payment card data layout, please refer to the ISO/IEC or ANSI
specifications and to the Payment Card Track Data Tutorial available from the PCI Security
Standards Council. Processing of data segments highlighted in Red (see Track Data Definition table)
is in scope for PCI-DSS compliance.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 312

• PAN – Payment Account Number as defined by ISO/IEC 7812 or ANSI X4.16 . The first characters of the PAN are the IIN
(Issuer Identification Number) for that PAN.

• Expiry Date – Payment Card Expiry Date (4 characters)
• SVC – Payment Card Service Code (3 characters)

Note :
ANSI X4.16 specifies a validity date of 4 characters in this area followed by 5 characters of discretionary data.

• CVV – Card Verification Value or similar other security code
• A (ACI) – Authorisation Control Index
• PIN, PVKI, PVV – Personal Identification Number or similar private key
• Discretionary, Open – Discretionary Data, possibly including sensitive data
• ^ – Track one separator character as listed in ISO/IEC 7813
• = – Track two separator character as listed in ISO/IEC 781344

44 This Chapter does not address ISO7816. For reference, under ISO7816, the separator is 0x0D retrieved from the EMV Track 2 Equivalent Data Element held on chip
card (sometimes referred to as the Magnetic Stripe Image or MSI).

 Extended Device & Media Type Handling

Revision 1.3, June 2013 313

8.4 Payment Data Truncation Rules and Requirements

As part of the change to the CUSS specification described below, platforms will need to truncate the
track data for payment cards read in the kiosk card reader. For the CUSS Technical Specification,
the term truncation is as defined in the PCI-DSS:

Practice of removing data segment. Commonly, when account numbers are truncated, the first
12 digits are deleted, leaving only the last 4 digits

Within the PCI-DSS, the term “truncation” applies the data that is stored or transmitted, whereas the
term “masking” applies to data that is visible on screen or on printed documents. More technically
speaking, in the context of CUSS magnetic card track data, truncation is:

Replacement of some or all characters positions within a stream of characters with a defined,
specific neutral character, to permanently obscure some or all data within the character stream
with neutral data.

Data truncation applies to all card track data that represent sensitive Payment Card track data. A card
is considered a Payment Card if all the following conditions are met:

1. If Track 1 is present, then on track 1 all the following rules apply

a. The length of the PAN is calculated by counting all non-space characters in the PAN field
(ie, spaces are allowed, but excluded from the PAN length calculation)

i. The length of PAN is greater than or equal to 12, and
ii. The PAN area contains only numeral data and spaces, and
iii. The PAN IIN prefix is not listed in the Platform Truncation Exclusion List (see below)

b. The field separator is ‘ ’̂, and

i. The track must contain a minimum of two separators

c. The length of the Expiry Code(in yymm format) is equal to 4, and

i. The Expiry Date contains only numeric data
ii. The numeric value of the ‘mm’ subfield is between 1 and 12

d. The length of the SVC code in ISO standard cards is 3 and immediately follows the Expiry

code. For ANSI standard cards there is no equivalent to the SVC and a validation date(in
yymm format) will immediately follow the expiry code. To properly assess this field it must
be validated as either ISO or ANSI.

For ISO validation:
i. The length of the data area of the SVC is a minimum of 3 characters and

 Extended Device & Media Type Handling

Revision 1.3, June 2013 314

1. The 1st service code (SVC) digit is one of: 1,2,5,6,7,9
2. The 2nd service code (SVC) digit is one of: 0,2,4
3. The 3rd service code (SVC) digit is one of: 0,1,2,3,4,5,6,7

Or,

For ANSI X4.16 validation:
i. The length of the data area is a minimum of 4 characters and

1. The Validity Date contains only numeric data
2. The numeric value of the ‘mm’ subfield is between 1 and 12

e. The first character is B

2. If Track 2 is present, then on track 2 all the f ollowing rules apply:

a. The length of the PAN is calculated by counting all non-space characters in the PAN field
(ie, spaces are allowed, but excluded from the PAN length calculation)

i. The length of PAN is greater than or equal to 12, and
ii. The PAN area contains only numeral data and spaces, and
iii. The PAN IIN prefix is not listed in the Platform Truncation Exclusion List (see below)

b. The field separator is ‘=’, and

i. The track contains exactly one separator

c. The length of the Expiry Code(in yymm format) is equal to 4, and

i. The Expiry Date contains only numeric data
ii. The numeric value of the ‘mm’ subfield is between 1 and 12

d. The length of the SVC code in ISO standard cards is 3 and immediately follows the Expiry

code. For ANSI standard cards there is no equivalent to the SVC and a validation date(in
yymm format) will immediately follow the expiry code. To properly assess this field it must
be validated as either ISO or ANSI.

For ISO validation:
i. The length of the data area of the SVC is a minimum of 3 characters and

1. The 1st service code (SVC) digit is one of: 1,2,5,6,7,9
2. The 2nd service code (SVC) digit is one of: 0,2,4
3. The 3rd service code (SVC) digit is one of: 0,1,2,3,4,5,6,7

Or,

For ANSI validation:

 Extended Device & Media Type Handling

Revision 1.3, June 2013 315

ii. The length of the data area is a minimum of 4 characters and
1. The Validity Date contains only numeric data
2. The numeric value of the ‘mm’ subfield is between 1 and 12

3. If both Track 1 and Track 2 are present, then al l the following rules apply in addition
to the individual track rules for both tracks liste d above:

a. The length of the PAN on Track 1 and the length of the PAN on Track 2 are equal (as
calculated above, excluding spaces)

b. The data in the ISO Service Code or ANSI validity date area on Track 1 and Track 2 are
equal.

4. If Track 1 is not present and Track 2 is not pre sent, but the JIS-II track is present, then on the

JIS-II track all the following rules apply:

a. The first character is alphabetical [A-Z, a-z]
b. The PAN IIN prefix is not listed in the Platform Truncation Exclusion List (see below)

To summarize: If the track data that is present matches all of th e rules that apply to those
tracks, then the card is considered a payment card and truncation procedures listed in the
next section apply to that card.

• If a card is read with track 1 data but track 2 is missing or has no data, then only the
rules in (1) apply

• If a card is read with track 2 data but track 1 is missing or has no data, then only the
rules in (2) apply

• If a card is read and includes data on both track 1 and track 2, then all the rules in
(1), (2) and (3) apply

• If a card is read but does not include track 1 or track 1 is empty, and does not
include track 2 or track 2 is empty, but includes the JIS-II track, then all the rules in
(4) apply

However, note the following:

• The determination of truncation for ISO/ANSI and. JIS-II is based on each individual set of rules for that
track.

• If JIS-II is determined to be for credit, then it will be truncated regardless of the determination for

ISO/ANSI tracks.

• Likewise, if the ISO/ANSI tracks are determined to be for credit, then they will be truncated regardless
of the determination for the JIS-II track.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 316

8.5 Data Truncation Flow Overview

Two modes of truncation, ie: FOID Data Record and DISCRETIONARY Data Record are defined
below. This section specifically defines the data truncation rules that a CUSS platform must
implement to be compliant with this chapter. All indexes are 1-based, as shown in the previous
diagram, and truncation ranges are inclusive of the start an d end positions. Examples of
truncation are provided in the next section.

1. The platform must detect card track data that complies with the payment card standards listed above
and apply the rules list above to determine if a card is a bank payment card data, or is not bank
payment card data.

2. Any track data detected as being payment card data, and the data is subject to FOID Data Record
truncation , then the platform must perform the following truncation (note : The PAN must be
compacted by removal of all embedded spaces before applying the truncation rules below):

a. If track 1 is present and not empty then truncate:

i. All numeral data from position 8 to the 5th position before the first separator (mask PAN)
ii. All data from the 1st position after the second separator until the end of the track (Expiry

and SVC or Date)

b. If track 2 is present and not empty then truncate:

i. All numeral data from position 7 to the 5th position before the separator (mask PAN)
ii. All data from the 1st position after the separator until the end of the track (Expiry and

SVC or Date)

c. If track 3 is present and contains at least one = separator, then truncate:

i. All numeral data from position 7 to the 5th position before the first = separator (mask
PAN)

ii. All data from the 1st position after the first = separator until the end of the track (Security
Code and Additional Data)

d. If track JIS-II is present (defined as CUSS Track 4) and the 1st position is alpha, then truncate:

i. All data from position 3 to position 6 (4 characters, PIN)
ii. All numeral data from position 17 to position 22 (6 characters, mask PAN)
iii. All data from position 40 to position 46 (7 characters, Expiry and Security Code)
iv. All data from position 68 to the end of the track

3. Any track data detected as being payment card data, and the data is subject to DISCRETIONARY Data

Record truncation , then the platform must perform the following truncation:

 Extended Device & Media Type Handling

Revision 1.3, June 2013 317

a. If track 1 is present and not empty then truncate:

i. All numeral data from position 8 to the 1st position before the first separator (mask PAN)
ii. Three data positions from the 5th position after the second separator (ISO SVC) or four

data positions from the 5th position after the second separator (ANSI validation date).

b. If track 2 is present and not empty then truncate:

i. All numeral data from position 7 to the 1st position before the first separator (mask PAN)
ii. Three data positions from the 5th position after the second separator (ISO SVC) or four

data positions from the 5th position after the second separator (ANSI validation date).

c. If track 3 is present and contains at least one = separator, then truncate:

i. All numeral data from position 7 to the 1st position before the first = separator (mask
PAN)

d. If track JIS-II is present (defined as CUSS Track 4) and the 1st position is alpha, then truncate:

i. All data from position 3 to position 6 (4 characters, PIN)
ii. All numeral data from position 17 to position 26 (10 characters PAN mask)
iii. All data from position 44 to position 46 (3 characters, Security Code mask)

4. The truncation character must be X (ASCII character 0x58.) This character is a de facto payment

industry standard for PAN masking and truncation.

In short, truncation replaces the PAN with the truncation character X, except for the leading six and
trailing four digits. For more information on why this 6+4 truncation is used, please review the PCI-
DSS FAQ site https://www.pcisecuritystandards.org/.

Payment card PAN values truncated with this 6+4 sch eme are acceptable for purposes of
identification, according to IATA RESOLUTION 722f w ith 2010 amended sections 20.60, 20.61,
20.62, 20.63, 20.64 and 20.66.

 Extended Device & Media Type Handling

Revision 1.3, June 2013 318

8.6 Data Truncation Exclusion List

The rules listed above are designed for the Platform to detect bank payment cards. It is possible that
these rules will also detect some card as bank cards, even though those cards are not bank cards.
This includes some card types that emulate the bank card track format, intentionally or not, but are
not bank cards, or other unanticipated cases of false positive detection.

To avoid truncation for specific types of card, the platform will apply two Data Truncation Exclusion
Lists : the FOIDLIST (do not apply any truncation) and the DISCLIST (apply Discretionary Data
Truncation)

1. The FOIDLIST is optional and provided by the application during setup() as the bytestream parameter
to the DS_TYPES_FOID_ISO and/or DS_TYPES_FOID_JIS2 parameters.

2. The DISCLIST is optional and provided by the application during setup() as the bytestream parameter
to the DS_TYPES_DISCRETIONARY_ISO and DS_TYPES_DISCRETIONARY_JIS2 parameters.

3. The list must be provided each time the application calls setup() and will be in effect until the next
setup() call, or the end of the application session.

4. The lists provided by the applications must be in ASCII text format: a sequence of 1 or more IIN (Issuer
Identification Number) numbers separated by commas (0x2C).

5. Each IIN in the list must consist of four or more digits.

6. An IIN matches a PAN number if the complete IIN is an exact prefix of the PAN number.

7. If the platform reads a Payment Card and the application provided the DISCLIST, and the PAN
matches any IIN in the DISCLIST, then DISCRETIONARY Data Record Truncation takes place, as
described above.

8. If the platform reads a Payment Card and the application provided the FOIDLIST, and the PAN
matches any IIN in the FOIDLIST, then no truncation takes place.

9. The DISCLIST takes priority over the FOIDLIST.

10. If the platform reads a Payment Card and the application has not setup() the DS_TYPES_PAYMENT_ISO
or DS_TYPES_PAYMENT_JIS2 types, then FOID Data Record Truncation takes place, as described
above.

11. The platform may log the FOIDLIST and DISCLIST parameters provided by the application. This log
can be used as a part of a regular audit or security review procedure, for example as input to a central
exceptions list for forensics review, or other platform maintenance activities.

For example, to read cards as FOID cards, but exclude all truncation for cards starting with “1234”
and “2345”, and return discretionary data for all cards starting with “34567” or “4567” or “9998”, then
the application calls setup() with:

 Extended Device & Media Type Handling

Revision 1.3, June 2013 319

 Record [0] : DS_TYPES_FOID_ISO bytestream [1234,2345]
 Record [1] : DS_TYPES_DISCRETIONARY_ISO bytestream [34567,4567,9998]

8.7 Visual Representation of Truncation Rules

 Extended Device & Media Type Handling

Revision 1.3, June 2013 320

8.8 Examples of Data Truncation

 Return, Event and Status Codes

Revision 1.3, June 2013 321

8.9 Modifications to the CUSS Card Reader interface

The card reader interfaces defined in CUSS are modified using the approach described
in Chapter 6. For more information on this approach, please read these sections:

Chapter 6: Extended Device & Media Type Handling
Appendix H: Extended Data Type List (DS_TYPES)

Four new extended data types are defined:

DS_TYPES_FOID_ISO 100 ISO track data with FOID Data truncation as defined above
DS_TYPES_FOID_JIS2 14100 JIS-II track data with FOID Data truncation as defined above
DS_TYPES_PAYMENT_ISO 200 ISO track data without truncation
DS_TYPES_PAYMENT_JIS2 14200 JIS-II track data without truncation

DS_TYPES_DISCRETIONARY_ISO 300
ISO track data with discretionary data truncation as defined
above

DS_TYPES_DISCRETIONARY_JIS2 14300
JIS-II track data with discretionary data truncation as defined
above

These types replace types DS_TYPES_ISO and DS_TYPES_JIS2, which are now
deprecated for card reader devices in CUSS Technical Specification 1.3. CUSS
platforms must support these new data types in accordance with the existing Extended
Media Type support methodology:

1. Other than modifications for Extended Media Type support, the behaviour of the card
reader components and characteristics remain as they are currently defined
elsewhere in this Technical Specification.

2. Advertise support for the extended DS_TYPES by including the correct settings

within the component characteristics.

3. Allow the application to select which data types it receives by use of the setup()
command with the correct parameters. If the application requires a truncation
exclusion list for the particular data type, it must include that list as the bytestream
field of the data record provided to the setup() command as per Section 6.2.1. See
the Data Truncation Exclusion List section above for more details.

a. The optional bytestream parameter for the DS_TYPES_DISCRETIONARY
records is the “DISCLIST”

b. The optional bytestream parameter for the DS_TYPES_FOID records is the
"FOIDLIST"

 Return, Event and Status Codes

Revision 1.3, June 2013 322

4. Apply the truncation required to the track data if the card is a payment card and the
requested data type is DS_TYPES_FOID_ISO, DS_TYPES_FOID_JIS2,
DS_TYPES_DISCRETIONARY_ISO, or DS_TYPES_DISCRETIONARY_JIS2.

5. If the application does not call setup(), the platform returns the default media type

(see next section) for the card reader, but the data type included in the msgDataType
structure must be DS_OK (0) for backwards compatibility.

6. In accordance with Section 6.2.1, once the application calls setup(), those settings

are in effect for the card reader until the application subsequently makes an
additional setup() call, the application calls disable(), or the application transaction
ends, whichever comes first.

7. The CUSS platform must implement this extended data type support and component
model in accordance with Section 6.3.4.

8.10 Backwards Compatibility of Platforms and Appli cations

A goal of this change to the CUSS Technical Specification is to allow CUSS applications
to continue to operate without requiring modification, when running on a CUSS platform
that has implemented these CUSS 1.3 card reader behavior changes.

In other words, the change is transparent to existing applications, except the data they
receive for payment cards is truncated. (Some CUSS applications do not perform
payments and read cards only for FOID transactions.)

The changes in this Chapter must be implemented so that the platform remains
backwards compatible with these applications, and so that these CUSS applications do
not require any interface modifications in order to continue to receive FOID data (albeit
the data is now truncated when bank card standards are detected).

So an updated CUSS platform must ensure that:

1. The platform must implement a default media type to use for its card reader
components.

a. The default media types must be DS_TYPES_FOID_ISO and
DS_TYPES_FOID_JIS2, the truncated forms

 Return, Event and Status Codes

Revision 1.3, June 2013 323

2. If the applications uses the card reader MediaInput component but the application does
not call setup() prior to enabling the device, then when the platform reads a card:

a. The data returned to the application must be of the default media type as defined
above

b. The DS indicator within the msgDataType structure for card read events must be
DS_OK (0), for compatibility -- since legacy applications would likely treat non-
zero DS values as errors

3. If the CUSS platform implements the Extended Media Type support as multiple

MediaInput components, then:

a. An application that is following the card reader guidelines of Chapter 7 must find
and detect the MediaInput component that is assigned the default media type
as defined above

b. If the application does not call setup(), the DS indicator within the msgDataType
structure for card read events must be DS_TYPES_ISO, for compatibility (since
non-zero DS values will likely be treated as errors)

c. If an application also acquires the alternate MediaInput component, then the
behaviour for component is as normally defined in the existing Extended Media
Type support methodology

This approach ensures that applications that are not modified can continue to use card
reader components as they do now, except that after a certain date (or when a
configuration flag is set) the track data it receives from the platform is truncated.

 Return, Event and Status Codes

Revision 1.3, June 2013 324

8.11 Use Cases and Device Sequence

 Return, Event and Status Codes

Revision 1.3, June 2013 325

8.12 Deferred use of Payment Card Data

This section provides background and clarity on a CUSS application use case called
“use of deferred payment data”. It does not modify the Technical Specification.

Example Use Case/Business Requirement:

The passenger swipes a magnetic card during the booking identification phase.
The card they read was a payment card, and they were successfully identified.

Some later point in the transaction requires payment. The application would then
re-use the same payment card data provided during identification, to complete
the payment, instead of prompting the passenger to re-read the same card.

The goal is to provide a seamless and logical overall transaction without requiring
duplicate card reads.

If the application wishes to have a “use of deferred payment data” use case as part of
its business logic, it must request and receive the full payment data at the beginning
(not just the FOID data) and preserve it within its logic until it needs it at a later point.
The platform must not do this on the application's behalf.

If the application chooses to do this, it must read full track data during the identification
phase, and protect that data for the entire time it is storing it in memory. This means that
all phases of the application are in scope for PCI-DSS, not just the payment phase.
Hence the decision to implement this transaction flow is a business logic and security
decision, not a technical limitation.

Here is a reminder of existing CUSS Technical Specification requirements related to
reading data from the kiosk platform.

1. Section 6.2.1: The application must call setup() prior to calling enable(), to indicate
which types of extended data it wants. To request a different type of data, the application
needs to call disable(), and then setup() with new parameters indicating the new data
type. This means a card must be physically read from the user if a different type of data
is needed.

 Return, Event and Status Codes

Revision 1.3, June 2013 326

2. Section 6.3.1: The application must call the receive() directive to access the data. The
platform will provide the data types requested by the application via the most recent
setup() call for that component.

3. Section 3.6.8.1 Note 4: The platform must erase its internal call data as soon as the
application calls receive(), disable(), or the application ends its transaction, whichever
comes first. Subsequent calls to receive() shall not return any data; hence the payment
data cannot be cached for later use.

8.13 Deployment Guidelines and Instructions

The changes described in this platform are mandatory for all CUSS sites to remain
compliant with IATA Recommended Practice RP1706C (effective date June 30th 2012.)
This date strictly imposes these conditions:

1. Any kiosk deployed after this date which does not implement either the changes in the

CUSS FOID Addendum document, or a fully compliant CUSS 1.3 platform, is not a
CUSS-compliant kiosk.

2. Sites that do not deploy CUSS 1.3 must work with their kiosk suppliers to retroactively
change a all existing deployments of CUSS 1.0, CUSS 1.1, and CUSS 1.2 to support the
CUSS FOID Addendum.

3. Existing and new CUSS sites must work with their platform suppliers to ensure
appropriate platform updates are deployed, if they wish to maintain site compliance with
the CUSS Technical Specification.

4. If a CUSS application is running on a CUSS 1.3 platform and the application does not
implement the changes in this Chapter, that application will not have access to full
payment card track data: they will only receive truncated data.

5. Any CUSS application that needs full payment card track data for payment transactions
must be modified to follow the changes in this Chapter. An application which does not do
this will lose the ability to process payments within their kiosk application.

6. According to the Appendix I: Application Updates and Distribution, if an application is
changed to use the new CUSS card reader extended media types, including new calls to
setup(), then this would be a Level 1 Change. This type of change could be subject to
testing or certification prior to deployment. Platform and application providers should
discuss this on a case by case basis, to determine what level of testing is appropriate.

 Return, Event and Status Codes

Revision 1.3, June 2013 327

7. By examining the card reader characteristics, a CUSS application can determine if the
platform us operating CUSS 1.3 or is implementing the CUSS FOID Addendum on
previous versions of the CUSS Technical Specification. It is an application business
logic decision whether or not to operate in this en vironment after the cutover date.

CUSS sites may choose to work with their platform supplier and application providers to
coordinate transition period to CUSS 1.3 in preparation for this change.

Platform providers control all access to kiosk device components and interfaces on their
CUSS platform. Once this change is implemented, additional control is available to the
platform provider in granting or denying CUSS application access to card reader data
(because there are now different requests for different types of data.)

At their discretion, platform providers may choose to leverage this control and add
additional business rules that could be used to restrict CUSS application access to
payment card data.

For example, a platform could only permit access to payment card data to known or
specific tested versions of a CUSS application. A platform provider shall discuss any
such restrictions with the affected application providers, prior to enacting them.

Summary of Platform Changes (mandatory for CUSS 1.3):

1. Implement new components and characteristics to implement the new extended media
types.

2. Detect when a payment card is read as part of a CUSS application transaction

3. Apply the truncation rules to modify the raw track data if needed and in accordance to
the component characteristics, the type of card read, and the extended media type
requests made by the application

4. Ensure that all implementation is done so that legacy application maintain access to the

card reader components and data (but will only receive truncated data)

Summary of Application Changes (mandatory only if a ccess to payment data is
required):

1. If the application does not require full PAN data for any aspect of its business logic, no
interface changes are needed to receive FOID data from the CUSS reader.

2. Even if the application does not use full payment card data, verify that internal card track

parsing logic can tolerate truncated data without error. For example, a FOID transaction

 Return, Event and Status Codes

Revision 1.3, June 2013 328

might fail if an application expects all characters in the PAN area of a payment card to
be digits, and it instead receives data truncated with ‘X’, even if ultimately it only uses
the name data.

3. Applications that require full payment track data need to change so that:\

a. They can detect and enable the specific card reader MediaInput component that

includes support for the new extended DS_TYPES_PAYMENT types.

b. The correct data type is selected using setup() at the right points in the
transaction; ie, select the DS_TYPES_PAYMENT component and call setup() for that
type, for payment transactions, and select the DS_TYPES_FOID and/or
DS_TYPES_DISCRETIONARY component and call setup for that type, for FOID and
all other non-payment card reading transactions.

4. If the application uses the PAN number as a search criteria, verify if other aspects of the
application architecture require change (such as DCS search methods) to support 6+4
truncated data

 Return, Event and Status Codes

Revision 1.3, June 2013 329

Ch 9: Automated Remote Updates (ARU)

This chapter defines the requirements for automated remote updates (ARU) for CUSS platforms
and applications. It is a combination of business requirements as well as Technical Specification
changes in CUSS 1.3.

Note: An automated remote updates process is meant to be an option available to airlines that
wish to use it. Airlines are not forced to use ARU.

Background

Automated Remote Updates (ARU) has been in use in the CUSS environment for years.
However, there is no standard for how to accomplish ARU and no requirement that all Platforms
must facilitate ARU.

There are benefits to Airlines, Platform Operators, and Platform Suppliers in making ARU a
standard part of CUSS products. These benefits include:

• Reduces costs and efforts otherwise required for the Platform Suppliers to receive and
manage multiple files for update requests arriving from the entire community of Airlines
operating at all of their supported sites.

• Reduces costs and efforts otherwise required from each Platform Supplier to prepare, test

and document a final installation package for each release to all of their sites.

• Reduces the risks of omissions or errors (and re-works) in the resulting Platform
installation package.

• Reduces the coordination efforts otherwise required between Airlines, Platform Suppliers

and each individual CUSS site Operator to execute and validate a “completed
installation”.

• Reduces the level of activity by local technicians at the individual CUSS sites in the

installation and management of Airline Application releases.

• Reduces the risks, errors and re-work often encountered when the local site does not
precisely comply with the exact installation instructions.

• Reduces the tedious/unproductive efforts invested by all parties for cases of faulty

installation.

 Return, Event and Status Codes

Revision 1.3, June 2013 330

• Mitigates risks by supporting an initial Beta rollout to selected sets, provides an

automated rollback when required and a global deployment capability without
committing multiple resources from all parties.

• Provides forward-looking technologies that leverage the CUSS standards for optimal

capability and functionality.

Goals

This section defines business requirements for ARU. Later in the chapter, the specific technical
features of the CUSS standard allowing ARU are described. Generally speaking, an ARU
process:

• Must ensure consistency of the deployment process.
• Must ensure that applications are installed correctly.
• Must reduce the amount of time that it takes to deploy eligible application updates.
• Must provide verifiable results of the deployment
• Requires that Application Providers trust the checks and balances put in place by the

specifications to prevent adverse impact on the common use environment.
• Requires that Airport operations must not be impacted.

Business Requirements

General

1. The processes of the ARU tool must facilitate Deployment to specific workstations
and/or kiosks.

Certification

1. Only specific types of application updates are eligible to be deployed using the ARU
process.

a. Changes invalidating the PCI compliance of an application, platform, or
airport are not eligible for deployment using the ARU process.

2. Application updates deployed through ARU must complete a Beta Test successfully

prior to Global Release.
a. This Beta Test must be executed using the ARU process.

 Return, Event and Status Codes

Revision 1.3, June 2013 331

3. An “ARU Tool” may be provided by the Application Supplier, Application Provider,
Platform Supplier, Platform Operator, or other party. An airline is not required to
implement such a tool but may opt to obtain one from another party.

4. An ARU Tool must be certified before use in a production environment.

a. An ARU tool is subject to the same certification requirements as the common
use application it is updating.

Notification (Order/Change Request)

1. For each instance of the ARU process, the Stakeholders must be identified. The
Stakeholders include defined representative(s) of the following. Note that the
members of the Stakeholders do not necessarily have to act on the notification.

a. The airline requesting the ARU
b. The airlines operating at the airport

i. The idea here is that any change, no matter how small, may have side
effects. Notification of changes is key to the quick determination of
any negative impacts of a change.

ii. These other airlines could become part of the ‘fyi list’.
iii. If the other airlines do not really care, then the site admin/support

personnel can handle this determination, and this portion of the
stakeholders can simply be deleted.

iv. Example: 10 airlines are running on a CUSS kiosk. Airline1 makes an
update with ARU. One or more of the other 9 airlines on that kiosk
begin to have problems. For the other 9 airlines, knowledge of the
update by Airline1 may help to determine negative impacts by
Airline1’s update.

c. The airport, such as its Change Control Board, managers, site administrators,
or other personnel.

d. Platform Supplier
e. Platform Operator
f. Any organization responsible for the Service Level Agreement of the airport,

airline, application, or platform.

2. The ARU Stakeholders must define acceptable change control windows for each
location.

3. The Application Provider/Supplier must notify the Stakeholders of their intent to

deploy an application update using ARU.

4. At the time of notification the Application Provider/Supplier must provide to the
Platform Supplier the complete application package including all updates to be made.

5. The Stakeholders must review the notification to identify any conflicting deployments
previously scheduled. A Stakeholder may request that the Application

 Return, Event and Status Codes

Revision 1.3, June 2013 332

Provider/Supplier reschedule a proposed ARU based on previously-scheduled
deployments.

Parameters for Distribution and Activation

1. The application update must include information that allows the Platform to validate
that the carrier is permitted to utilize the ARU process.

a. The Platform must be permitted to decline application updates from
Application Provider/Suppliers whose ARU process has previously adversely
affected the common use environment.

2. The Platform Operator must be able to decline temporarily all ARU attempts from

any Application Provider/Supplier.
a. The purpose of this function is to facilitate short lived site specific problem

resolution or site freezes. If a an ARU is temporarily declined the reason for
this needs to be communicated to the requesting airline.

3. The application update must include information that allows the Platform to validate

that the update is eligible to be deployed and/or activated.

4. The Platform must provide an interface to Application Providers/Suppliers to
communicate information regarding the common use environment at the target site.

5. The application must include easily-accessible information to the platform, indicating
the version that is in use. Every change requires the application to change its version.

6. The distribution of application updates must not exceed a defined percentage of the
available bandwidth capacities or protocol limits. This limit is to be set by the
Platform Operator.

7. The distribution and activation of an application update must not cause any
workstation or kiosk to exceed the maximum CPU utilization.

8. The Platform must perform a real-time virus check on the received files included in
the application update at the time of Distribution.

9. The distribution and activation of an application update must not render the
workstation or kiosk unavailable for use by other applications.

a. This is a requirement for both the Application Provider/Supplier and the
Platform Supplier.

 Return, Event and Status Codes

Revision 1.3, June 2013 333

10. The Platform must allow the ARU tool to re-start the Application without rebooting
the workstation or kiosk.

Distribution

The ARU process must allow an Application Provider/Supplier to distribute application updates
subject to eligibility rules defined in Appendix I to target locations independent of intervention
from the Platform Supplier or Platform Operator.

Activation

1. The ARU process must allow an Application Provider/Supplier to activate an
application update to target locations independent of intervention from the Platform
Supplier or Platform Operator, subject to eligibility rules defined in Appendix I.

2. Activation will not proceed without disaster recovery being available. Refer to

fallback/rollback for clarification

Validation

1. The ARU Tool must check whether the activation was successful or not.
a. The ARU tool cannot provide application functional validation. This can only

be done by end users.

2. The ARU tool should provide capability to indicate the need for a rollback/fallback in
case of unsuccessful activation.

Cleanup

1. The ARU tool must adhere to the clean up rules defined in the CUPPS TS and CUSS
TS.

Rollback/Fallback

1. Prior to Activation the Platform Supplier/Operator must ensure to preserve the current
version of the application.

2. The Application Provider/Supplier must provide Rollback documentation

3. The ARU Tool must have the capability to rollback the application anytime if
required.

a. Ensure proper notification prior to Rollback.

 Return, Event and Status Codes

Revision 1.3, June 2013 334

4. The Rollback execution will be executed by the ARU Tool or by the Platform

Supplier/Operator as defined in the Rollback plan.

5. The Fallback execution shall remain the sole responsibility of the Platform
Suppliers/Operator.

a. The Platform Supplier/Operator can temporarily disable ARU to ensure that
the Rollback/Fallback returns the Platform to its previous state.

b. The Platform Supplier/Operator will engage with the Airline to resolve the
issue(s).

Service Level Agreement

1. The SLA should take into account adverse impact caused by an Application
Provider/Supplier rather than the Platform Supplier or Platform Operator.

2. Airlines using ARU must have a 24/7 major incident management process and

resources.

Application ARU via the CUSS Technical Interfaces

Applications that wish to perform automated remote updates on a CUSS kiosk must comply with
the business requirements described above, and use the new CUSS interface methods added to
CUSS 1.3 to request permission to perform an ARU.

In prior versions of CUSS, applications could perform remote updates, without control or
oversite by the platform. This is an implicit capability of the CUSS standard, which allows
applications completely control over their business logic and local storage directory, and allows
Application Service Provider interfaces to stop and restart an application.

If the platform does not support CUSS 1.3, the application may defer to previous update methods
implicitely supported by the CUSS standard.

If the platform does support CUSS 1.3, the application must follow the ARU guidelines outlined
here. The application ARU process shall be:

1. Generally speaking, the ARU infrastructure of the application must comply with the
business guidelines listed above. These are non-technical requirements that cannot be
prescribed within the interface definition of the CUSS Technical Standard.

2. The technical requirements listed here can be done from within the CUSS application
itself, or via an Application Service Provider application connected to the CUSS
platform System Manager interface.

 Return, Event and Status Codes

Revision 1.3, June 2013 335

3. At startup, the application must perform the VERSION_EXPLANATION request
described in Section 2.4.5.8, if it intends to perform automated remote updates.

4. In response to the VERSION_EXPLANATION , the platform will indicate the

parameters affecting ARU for that application:
a. Time of day restrictions for applying updates
b. Download bandwidth restrictions
c. Suggested CPU limit during update

5. While operating normally, the application can perform tasks related to ARU (such as

background downloading) within the guidelines of the paramers provided as per
2.4.5.8. In particular:

a. Background transfers to download updates can take place at any time and are
subject to the bandwidth limitation provided for ARU.

b. The updates can only be installed during the time window restriction provided
for ARU.

6. When the application is ready to perform the update, it must send an

UPDATE_REQUEST event to the platform as described in Section 2.4.5.9

7. The platform can evaluate the name of the application making the request, the version
it reported at startup via the VERSION_EXPLANATION request, and the version it
is requested to upgrade to via the UPDATE_REQUEST.

8. This information, along with internal provider back office procedures, are sufficient
to evaluate if the application is permitted to update on this particular kiosk at this
time. If the platform then returns RC_OK, the application is permitted to perform the
ARU. If the platform does not return RC_OK, the update is not permitted.

9. If the platform responds RC_PARAMETER to either the
VERSION_EXPLANATION or UPDATE_REQUEST events, the application can
assume the platform does not support CUSS 1.3 ARU interfaces, and can revert to
previous update behaviours.

10. Either immediately, or within the time window specified by the platform to allow
ARU, the application can then take the technical steps needed to apply the updates to
the local application files.

11. Once the technical update steps are complete (this will vary from application to
application) the application can request an application restart, by using the notify()
request using state transition AVAILABLE_STOPPED_RESTART,
UNAVAILABLE_STOPPED_RESTART, or ACTIVE_STOPPED_RESTART.

 Return, Event and Status Codes

Revision 1.3, June 2013 336

12. Once restarted, the application must again report its version using the
VERSION_EXPLANATION event.

a. If the application chose to not apply the ARU or there was an error applying
the update, this version report should be the same as the previous restart.

b. If the ARU was applied successfully, this version report should match the
version requested as part of the UPDATE_REQUEST.

 Return, Event and Status Codes

Revision 1.3, June 2013 337

Here is a sequence diagram of a typical normal update that is successfully performed using the
ARU interfaces:

 Return, Event and Status Codes

Revision 1.3, June 2013 338

Appx A: Return, Event and Status Codes

This Appendix lists all functions return codes, event codes, status codes used in CUSS.

Function Return Codes
Function return codes describe the lexico-syntaxic analysis results of an interface call (directive).
If the return code is 0 (RC_OK), then the directive has been accepted. Negative return codes
means that the directive has been rejected.

Function Return Codes
Code Name Description

0 RC_OK Directive accepted. No errors detected by function.

-1 RC_REFERENCE Invalid application reference. The calling application
is using an invalid application token that has not
been assigned by application manager..

-2 RC_STATE Invalid state. The application is not in the correct
state to invoke the called function.

-3 RC_DENIED Access denied. The application is not allowed to use
the function.

-4 RC_PARAMETER Parameter error. An error has been detected in the
passed arguments to the called function.

-5 RC_ANY_PARAMETER Error in using a CORBA::any type. The data type
contained in a CORBA::any type maybe unusable.
e.g. The datastream parameter, an alias of
CORBA::any, passed in the send/setup functions is
not one of he accepted data types; aeaDataType,
svgDataType, msgDataType or nilDataType.

-6 RC_LISTENER No listener set. No listener reference has been set
for asynchronous events.

-7 RC_SHARE Invalid share mode. This is used when SP system
manager is trying to have exclusive access of a
device when it is not allowed.

-8 RC_UNAUTHORIZED Attempted to issue an unauthorized command. e.g.
The DataStream parameter passed in the send/setup
function may contain a non-accepted ATB or SVG
command and/or data.

-9 RC_ERROR Any other error not defined above
-10 RC_NOT_SUPPORTED This function is not supported (i.e. not implemented).

 Return, Event and Status Codes

Revision 1.3, June 2013 339

Event Codes 45
An event code reflects either an application or component state transition (or the actual state
itself in case there is no state transition). For more detailed description of application states and
state transitions, refer to Sections 2.4.1 and 2.4.3. For more detailed descriptions of device
component states and state transitions, refer to Sections 2.6.3 and 2.6.5.

Event Codes
Code Name Usage Description

000 EC_OK System
Manager

Used in the returned event for calls
to suspendAll, resumeAll or
stopAll directives.

Component State Transitions
001 EVENTHANDLING_

READY
Peripheral The application has successfully

executed a directive for a device
component that is online and
functioning normally (soft conditions
and OK only). This is also used
when a device component recovers
from a hard condition.

002 UNAVAILABLE_
RELEASED_
PLATFORM

Peripheral An authorized platform component
has released a device component
that is offline or not functioning
normally (e.g. before CAM moves an
application to DISABLED state)

003 EVENTHANDLING_
UNAVAILABLE

Peripheral An acquired device component has
now become unavailable due to a
hard condition such as becoming
offline or unusable.

004 UNAVAILABLE_
RELEASED_
APPLICATION

Peripheral The application has released a
device component that is offline or
not functioning normally.

005 READY_RELEASED_
APPLICATION

Peripheral The application has released a
device component that is online and
functioning normally.

006 READY_RELEASED_
PLATFORM

Peripheral An authorized platform component
has released a device component
that is online and functioning
normally (e.g. before CAM moves an
application to DISABLED state)

007 RELEASED_READY Peripheral Application has successfully
acquired a device component that is
online and functioning normally.

008 RELEASED_UNAVAILABL
E

Peripheral Application has successfully
acquired a device component that is
offline or not functioning normally
(unusable).

Application State Transitions

45 In CUSS 1.0, event codes 117, 124, 125, 126, and 131 are no longer used.

 Return, Event and Status Codes

Revision 1.3, June 2013 340

Event Codes
Code Name Usage Description

101 INITIALIZE_DISABLED CAM -> App State transition Disable : CAM
moves an application into
DISABLED state due to incorrect
behavior while in INITIALIZE state.

102 AVAILABLE_
DISABLED

CAM -> App State transition Disable : CAM
moves an application into
DISABLED state due to incorrect
behavior while in AVAILABLE state.

103 ACTIVE_DISABLED CAM -> App State transition Disable : CAM
moves an application into
DISABLED state due to incorrect
behavior (e.g. KILL_TIMEOUT
expires) while in ACTIVE state.

104 UNAVAILABLE_
AVAILABLE

App -> CAM State transition Wait : Application has
requested to move to AVAILABLE
state after determining that the
CUSS environment is adequate to its
proper execution.

105 AVAILABLE_ACTIVE CAM -> App State transition Activate : CAM
moves an application into ACTIVE
state after user has selected its icon
on CLA

106 ACTIVE_AVAILABLE App -> CAM State transition Wait : Application has
requested to move back to
AVAILABLE state after completing
its session.

107 INITIALIZE_STOPPED_ST
OP

App -> CAM
CAM -> App

State transition Stop: Application or
SM has requested to stop the
application while it is in INITIALIZE
state.

108 AVAILABLE_STOPPED_S
TOP

App -> CAM
CAM -> App

State transition Stop: Application or
SM has requested to stop the
application while it is in AVAILABLE
state.

109 ACTIVE_STOPPED_
STOP

App -> CAM
CAM -> App

State transition Stop: Application or
SM has requested to stop the
application while it is in ACTIVE
state.

110 SUSPENDED_
STOPPED_STOP

CAM -> App State transition Stop: CAM moves
an application into STOPPED state
upon request from the same SM that
had suspended it.

111 DISABLED_STOPPED_ST
OP

CAM -> App State transition Stop : CAM or SP
SM has requested to stop an
application while it is in DISABLED
state after human intervention has
occurred.

112 SUSPENDED_
AVAILABLE

CAM -> App State transition Resume: CAM
moves an application back to
AVAILABLE state upon request from
the same SM that had suspended it.

113 AVAILABLE_
SUSPENDED

CAM -> App State transition Suspend : CAM
moves an application from

 Return, Event and Status Codes

Revision 1.3, June 2013 341

Event Codes
Code Name Usage Description

AVAILABLE state to SUSPENDED
upon request from a SM.

114 INITIALIZE_STOPPED_RE
START

CAM -> App State transition Restart: Application
will be stopped and reloaded by
CAM due to system restart.

115 AVAILABLE_
STOPPED_RESTART

CAM -> App State transition Restart: Application
will be stopped and reloaded by
CAM due to system restart.

116 ACTIVE_STOPPED_
RESTART

CAM -> App State transition Restart: Application
will be stopped and reloaded by
CAM due to system restart.

118 SUSPENDED_
STOPPED_RESTART

CAM -> App State transition Restart: Application
will be stopped and reloaded by
CAM due to system restart.

119 STOPPED_INITIALIZE CAM -> App State transition Load: CAM loads a
STOPPED application upon request
from SM or from itself.

120 DISABLED_INITIALIZE CAM -> App State transition Load : CAM loads a
DISABLED application upon request
from SM or from itself after human
intervention occurs.

121 UNAVAILABLE_
STOPPED_RESTART

CAM -> App State transition Restart: Application
will be stopped and reloaded by
CAM due to system restart.

122 UNAVAILABLE_
DISABLED

CAM -> App State transition Disable : CAM
moves an application into
DISABLED state due to incorrect
behavior while in UNAVAILABLE
state.

123 UNAVAILABLE_
SUSPENDED

CAM -> App State transition Suspend : CAM
moves an application from
UNAVAILABLE state to
SUSPENDED upon request from a
SM.

127 SUSPENDED_
UNAVAILABLE

CAM -> App State transition Resume : CAM
moves an application back to
UNAVAILABLE state upon request
from the same SM that had
suspended it.

128 UNAVAILABLE_
STOPPED_STOP

CAM -> App State transition Stop : Application or
SM has requested to stop the
application while it is in
UNAVAILABLE state.

129 INITIALIZE_
UNAVAILABLE

App -> CAM State transition Check : Application
has requested to move to
UNAVAILABLE state after
completing its initialization.

130 AVAILABLE_
UNAVAILABLE

App -> CAM State transition Check . Application
has requested to move back to
UNAVAILABLE state after
determining that the CUSS
environment is not adequate to its
proper execution.

 Return, Event and Status Codes

Revision 1.3, June 2013 342

Event Codes
Code Name Usage Description

132 ACTIVE_ACTIVE App -> CAM State transition Wait : Application has
indicates a customer transaction has
started while in Persistent Single-
Application Mode.

133 ACTIVE_UNAVAILABLE App -> CAM State transition Check . Application
has requested to move back to
UNAVAILABLE state after
determining that the CUSS
environment is not adequate to its
proper execution.

Application/Component States
201 RELEASED Peripheral A device component has been

released (or not yet acquired) by the
application. It may or may not be
usable.

202 UNAVAILABLE Peripheral

A previously acquired device
component is offline or not
functioning normally (unusable).

Application Application is in UNAVAILABLE
state .

203 READY Peripheral A previously acquired device
component is online and offline or
not functioning normally (ready to be
used).

204 STOPPED Application Application is in STOPPED state.
205 SUSPENDED Application Application is in SUSPENDED state.
206 DISABLED Application Application is in DISABLED state.
207 INITIALIZE Application Application is in INITIALIZE state.
208 AVAILABLE Application Application is in AVAILABLE state.
209 ACTIVE Application Application is in ACTIVE state. CAM

may use this event code to ask the
application to complete its session if
SESSION_TIMEOUT has elapsed.

210 BUSY Peripheral A device component is in transient
state BUSY (e.g. reading/writing
under progress)

Status Codes
Status code describes the current status of a component or the result of the semantical analysis of
a component interface call or the execution result of a component interface call. Refer to the
status code tables for all the device components directives in Section 3.6 to find in which context
these status codes must be used.

 Return, Event and Status Codes

Revision 1.3, June 2013 343

Status Code Description

Code Name Description Event
Type

000 OK Device online and ready or interface calls
generates no error.

public1

001 TIMEOUT Synchronous or asynchronous function call
timed out

private

002 WRONG_STATE Component is in the wrong state to receive
this call

private,
platform

003 CANCELLED Asynchronous function call cancelled. private
004 SOFTWARE_ERROR

Detected a recoverable software error
during execution of function.

private,
platform

005 ALMOST_OUT_OF_
TIME

NOT used in CUSS1.0 private,
platform

006 OUT_OF_SEQUENCE Function has been called out of sequence.
(e.g. calling send/receive before enable or
calling enable/disable twice)

private

Media -Related (100 -199)
101 MEDIA_JAMMED Documents or magstripe card jammed

inside device.
public

102 MEDIA_MISPLACED Document or magstripe card inserted
incorrectly. e.g. An ATB document inserted
up-side down.

private,
platform2

103 MEDIA_PRESENT Document is inserted into device. A event
must be sent even if media was not kept
in the peripheral device (e.g. swipe or DIP
card reader)

private

104 MEDIA_ABSENT No document to offer (for
Dispenser/Feeder) or document is
removed from device while it is enabled
(for MediaInput, MediaOutput). In the latter
case, an event must be sent even if
document was not kept in the peripheral
device (swipe or DIP card reader)

private

105 MEDIA_HIGH Component (e.g. Capture) reached
AlmostFullLevel Threshold

public

106 MEDIA_FULL Feeder/Dispenser/Capture device is full of
documents.

public

107 MEDIA_LOW Feeder reached AlmostEmptyLevel
Threshold.

public

108 MEDIA_EMPTY Feeder has no documents (e.g. out of
paper)

public

109 MEDIA_DAMAGED e.g. Card/Coupon physically damaged public
110 MEDIA_

INCOMPLETELY_
INSERTED

Document is incompletely inserted into
device and removed

private

1 private for solicited events
2 only for userless classes

 Return, Event and Status Codes

Revision 1.3, June 2013 344

Status Code Description

Code Name Description Event
Type

Data-Related (200 -299)
201 FORMAT_ERROR Error detected in format of data used in

send/receive.
e.g. An ATB card/coupon incorrectly
encoded or wrong PECTAB or invalid
datastream (AEA99 or SVG).

private,
platform3

202 LENGTH_ERROR Data stream provided for send/receive is
incomplete.

private,
platform3

203 DATA_MISSING No data provided while using send/receive
functions.

private,
platform3

204 PHYSICAL_ERROR Not used in CUSS 1.0 private,
platform3

205 DATA_PRESENT DATA read from the inserted document
and application can get this data by calling
receive.

private

Hard Error Related (300 -399)
301 CONSUMABLES e.g. printer ribbon , head public
302 HARDWARE_ERROR An error due to hardware malfunction that

makes the component UNAVAILABLE
public

303 CRITICAL_
SOFWARE_ERROR

Detected a software error during execution
of function that makes the component
UNAVAILABLE

public

304 NOT_REACHABLE Device is not connected (unknown status) . public
305 NOT_RESPONDING Device is connected but not responding or

not ready
public

306 THRESHOLD_ERROR Too many errors have occurred. public
307 THRESHOLD_USAGE Inserting/removing card/coupons

performed too many times.
public

308 CONFIGURATION_
ERROR

 public

309 SESSION_TIMEOUT Active Application Session timeout. Sent
when sessionTimeout elapses.

private,
platform

310 KILL_TIMEOUT Sent before moving an application to
DISABLED state.. Sent after killTimeout
elapses if the application is still in ACTIVE
state.

private,
platform

Application -Related (400 -599)
4xx Application dependent

(technical)

These events provide the availability to an
application to publish an event to a SM
with a bilateral or multilateral agreement on
the exact meaning of the event codes.

private

3 only for output classes

3 only for output classes

3 only for output classes

3 only for output classes

 Return, Event and Status Codes

Revision 1.3, June 2013 345

Status Code Description

Code Name Description Event
Type

5xx Application dependent
(security)

These events provide the availability to an
application to publish an event to a SM
with a bilateral or multilateral agreement on
the exact meaning of the event codes.

private

Application State Change Requests (800 -899)
801 CUSS_MANAGER_

REQUEST
Used when CAM sends an event to AL
application to change its state upon
request from CAM itself.

private,
platform

802 SP_SYSTEM_
MANAGER_
REQUEST

Used when CAM sends an event to AL
application to change its state upon
request from SP System Manager

private,
platform

803 AL_SYSTEM_
MANAGER_
REQUEST

Used when CAM sends an event to AL
application to change its state upon
request from AL System Manager

private,
platform

804 CL_APPLICATION_REQU
EST

Used when CAM sends an event to AL
application to change its state upon
request from CLA

private,
platform

805 AL_APPLICATION_REQU
EST

Used when CAM sends an event about
application state changes due to
application request.

private,
platform

Application -Related (900 -999)
9xx Application dependent

(business, functional)

These events provide the availability to an
application to publish an event to a SM
with a bilateral or multilateral agreement on
the exact meaning of the event codes.

private

Data Status Codes
The Data Status code describes the status of each data record in a MSG data type (for the
definition of MSG data stream, refer to Section 3.1.9: Data)

Data Status Code Description
Code Name Description

0 DS_OK Data record is OK
1 DS_CORRUPTED Data record is corrupted (no data included)
2 DS_INCOMPLETE Data record is incomplete
3 DS_ZEROLENGTH Data record is of length 0

Please review Chapter 6 for information on how additional DS_TYPES and other data status
codes are used for new and extended media types and information.

Please note that if the platform detects and return DS_CORRUPTED as the data status, then it
shall not include any data in the data record.

 Component Mappings

Revision 1.3, June 2013 347

Appx B: Component Mappings

Introduction
It is highly recommended that the number of physical components be minimal. Use a device that
can read and write on the same stock rather than using two devices. Use a device that can
manage many types of stock, e.g.: magnetic card, ATB2 and chip card, instead of one device per
stock type.
The real component represents the real physical peripheral that is installed on a CUSS platform.
Many peripherals are mapped into virtual component types to indicate that they have the same
general characteristics: media, data type, etc.
A real component may be mapped to one or more set of disjoint virtual components (e.g. A real
ATB2 printer could be mapped to a virtual BoardingPass Printer and virtual ReceiptPrinter
assuming this ATB2 printer is configured to have both boarding pass and receipt stocks). Refer
to Section 2.6.1: Virtual Component Concept for further information.

Application developers should also review Chapter 7, which provides much more extensive
information provides much of the same information as here, but organized more practically to
assist in writing code to find and use CUSS devices in a kiosk application.

Real Components Mapping
The following table lists typical CUSS real components, their requirement (Mandatory,
recommended, optional) and their associated virtual component(s) that each real component
consists of.
Depending on the device configuration (device functions and/or media types supported), some
real component mapping will need more than one virtual component of the same type but the list
includes only one sample of that type. Real components are not listed by company and model
number, but by general component, allowing for a reduction in the length of the list and still
providing a global view.

Note 1 (from CUSS 1.0 Addendum A.1.28):
This is not a complete list of the types of real devices, of the types of virtual component, or of
virtual component linking, which may be found on a kiosk. Specifically, it is not meant as a
reference as to how devices can be identified on a kiosk: it does not and cannot reflect every
possible CUSS device that might exist on a kiosk.

Most importantly, the “Real Component Name” listed below is not guaranteed to match the
realComponentName Characteristic value found for virtual components for that device type in a
kiosk. A CUSS application should not rely exclusively on the realComponentName to determine
the capabilities and devices that exist on the kiosk. It must analyze the component linking and

 Component Mappings

Revision 1.3, June 2013 348

characteristics to chose and use the virtual components it needs. Chapter 7 has detailed
information on how to do this.

Real Component Name Requirement Virtual Component Type
/Name

ATB2Device Recommended MediaInput
MediaOutput
Dispenser
Feeder

ATB2DeviceWithEscrow Optional MediaInput
MediaOutput
Dispenser
Dispenser (for Escrow)
Capture (for Escrow)
Feeder

ATB2Printer Recommended MediaOutput
Dispenser
Feeder

ATB2Reader Recommended MediaInput
Dispenser
Capture (for Escrow)

Audio Optional DataOutput
BagTagPrinter Recommended MediaOutput

Dispenser

Feeder
BarCodeScanner Optional MediaInput
 Capture
BoardingPassCaptureBin Optional Capture
BoardingPassDispenserBin Optional Dispenser

Or
Feeder

BoardingPassPrinter Mandatory MediaOutput
Dispenser

Feeder
CardReader (Mag+Chip) Recommended MediaInput (for Magnetic

cards)
MediaInput (for Chip cards)
Dispenser

ChipCardCaptureBin Optional Capture
ChipCardDevice Optional MediaInput

MediaOutput
Dispenser

ChipCardDispenserBin Optional Dispenser
Or
Feeder

ChipCardReader Optional MediaInput
Dispenser

ChipCardWriter Optional MediaOutput
Dispenser

 Component Mappings

Revision 1.3, June 2013 349

Real Component Name Requirement Virtual Component Type
/Name

Feeder
Clock Mandatory DataInput
 Dispenser

Display Mandatory Display

DoorSensor Recommended DataInput
Escrow Optional Dispenser

Capture
FingerprintReader Optional UserInput
GPPrinter Optional MediaOutput

Dispenser
Feeder

HardDisk Mandatory Storage
Keypad Optional UserInput
LEDIndicator Optional UserOutput
MagneticCardDevice Optional MediaInput

MediaOutput
Dispenser
Feeder

MagneticCardEncoder Optional MediaOutput

Dispenser
Feeder

MagneticCardReader Mandatory MediaInput

Dispenser (for motorized
readers only)

Monitor Optional Display
Network Mandatory Network
OCRReader Optional MediaInput
PassportReader Recommended MediaInput
PinPadEncrypting Optional UserInput

DataOutput
ProximitySensor Optional UserInput
RadioRFID Optional MediaInput
ReceiptPrinter Recommended MediaOutput

Dispenser
Feeder

TicketPrinter Optional MediaOutput
Dispenser
Feeder
Capture

TouchScreenOverlay Mandatory UserInput
UPS Recommended DataInput
VideoCamera Optional UserInput
VisualCustomerAssistanceLight Optional UserOutput
Hardware WatchDog Recommended DataInput

 Component Mappings

Revision 1.3, June 2013 350

Note 2 (taken from CUSS 1.0 Addendum A.1.24):
The list above is not an exhaustive or complete list of all possible virtual device combinations; it
is a guide as to the most common types of devices. For example, newer passport readers with
features such as physical clamping or full-page scanning may indeed have real Dispenser
components.

Application developers must make sure they check for linked components. For example, when
reading from a MediaInput device, a linked Dispenser component may exist, in which case the
application must call offer() to return documents to the user.

Note 3 (taken from CUSS 1.0 Addendum A.1.17):
If an application needs to play sounds, it shall use native methods and APIs and only play sounds
without modifying kiosk behavior such as adjusting the sound volume.

To determine if the kiosk is able to play audio, the application shall look for a virtual Audio
component. An application can then play native sounds if and only if a virtual audio component
exists. CUSS platforms shall not include this Audio component if the kiosk cannot or should not
play audio.

If the audio component exists and an application invokes the send() directive, the platform shall
return RC_NOT_SUPPORTED to the application; there is no CUSS-standard way of sending
audio to the platform in this fashion.

 Technologies and Standards

Revision 1.3, June 2013 351

Appx C: IDL Interface Definition Files

This appendix lists all the CUSS IDL files defining the CUSS CORBA interfaces. This includes:

• types.idl: Type definitions used in all CUSS IDL files
• comps.idl: Component definition to all CUSS components
• codes.idl: Core definitions of all CUSS codes
• characteristics.idl: Characteristics definitions of CUSS components
• CUSS.PAYMENT.XSD: XML messaging schema for the payment interface
• CUSS.SBD.XSD: XML messaging schema for bag tag RFID

Note 1 (from CUSS 1.0 Addendum A.1.33):
Unless specifically addressed within a comment or future Addendum entry, the syntax and type
definitions within the IDL override and displace any conflicting passages included elsewhere in
this Technical Specification document. For example, if the IDL specifies that a field is an “any”
type, but a different section in this document indicates that field is a “name” type (String) then
the IDL prevails and the element shall be treated as an “any”.

When and if errors within the IDL itself are found, the conflict will be resolved within the CUSS
Technical Group meetings and this technical specification will be updated accordingly.

 Technologies and Standards

Revision 1.3, June 2013 352

types.idl (Type definitions for CUSS)

//--- -----------------------
//
// File: types.idl
//
// Purpose: Type definitions for CUSS idls
//
// Date: 17.06.2013
//
// Version: 1.3
//
// Author: IATA Passenger Experience Management Group: CUWG CUSS-TSG
//
// Copyright(c) 2003,2009,2013 International Air T ransport Association, All Rights Reserved
//
// Note: Please refer to the CUSS 1.3 Technic al Specification for more information
//
//--- ---------------------------

#ifndef TYPES_IDL
#define TYPES_IDL

#pragma prefix "cuss.iata.org"

/**
 * Definition of the Data Types
 *
 * @note If your version of the IDL compiler trea ts eventType as a CORBA IDL identifier,
 * you will need to escape it by prepending an underscore (_) to it, that is
 * replace all occurrences of eventType wit h _eventType
 */

module types
{
 typedef string name; /**< Defini tion for names */
 typedef sequence<name> namelist; /**< Defini tion for name lists */
 typedef sequence<long> indexList; /**< Defini tion for a list of indexes */
 typedef string reference; /**< Used a s the application reference (token) */
 typedef string ior; /**< CORBA Object reference like IOR:..... */
 typedef sequence<ior> iorlist; /**< List o f IORs */
 typedef sequence<octet> bytestream; /**< Defini tion for data streams */
 typedef any correlation; /**< Used a s a user defined private identification */

 /** The time out data type.
 * A value > 0 specifies a synchronous call wit h timeout in MilliSeconds.
 * A value < 0 specifies an asynchronous call w ith timeout in MilliSeconds
 */
 typedef long timeout;

 const timeout BLOCK_ = 0; /**< Wait fore ver on synchronous calls */

 /**
 * Application and Kiosk Identification
 */
 struct akID
 {
 name companyCode; /**< eg 3L- or 2L-code for airlines */
 name applicationName; /**< Name of the applic ation */

 name vendorCode; /**< Vendor specific co de (used for SM-Interface) */
 name kioskName; /**< Name of the kiosk (used for SM-Interface) */
 };

 /**
 * Kiosk location identification
 */
 struct location
 {
 name airportCode; /**< 3L code for the airp ort or city or any location */
 name terminal; /**< Terminal name, if ap plicable */
 name area; /**< Area name, if applic able */
 name address; /**< Free form address, i f applicable */
 };

 /**

 Technologies and Standards

Revision 1.3, June 2013 353

 * Predefinition for GPS
 */
 enum orientation
 {
 north_,
 south_,
 east_,
 west_,
 undefined_
 };

 /**
 * Base definition for GPS coordinates
 */
 struct coordinate
 {
 orientation direction; /**< north, south , east, west or undefined */
 long degrees; /**< Subdivision in degrees */
 long minutes; /**< Subdivision in minutes */
 long seconds; /**< Subdivision in seconds */
 long hundreths; /**< Subdivision in hundredths of a second */
 };

 /**
 * CUSS uses GPS coordinates to inform about th e exact kiosk location
 */
 struct gps
 {
 coordinate longitude; /**< Value for longi tude coordinate */
 coordinate latitude; /**< Value for latit ude coordinate */
 long altitude; /**< Height in meter s from sea level */
 };

 /**
 * Structure returned with the <i>level-directi ve</i>
 */
 struct EnvironmentLevel
 {
 timeout sessionTimeout;
 /**< session timeout (in milliseconds) for active applications */

 timeout killTimeout;
 /**< Time (in milliseconds) left before an application is killed */

 akID kioskID; /**< Identificatio n of the kiosk */
 location kioskLocation; /**< Location of t he kiosk (text form) */
 gps gpsLocation; /**< GPS coordinat es of the kiosk */

 name cussVersion;
 /**< contains a comma-separated string for all CUSS versions supported */

 name cussInterfaceVersionMin; /**< Thi s field may be left blank */
 name cussInterfaceVersionMax; /**< Thi s field may be left blank */

 name jvmName; /**< Name of the JAVA virtual machine supported */
 name jvmVersion; /**< Version of the J AVA virtual machine supported */

 name browserName; /**< Name of the installed internet browser */
 name browserVersion; /**< Version of t he installed internet browser */

 name osName; /**< Name of the inst alled operating system */
 name osVersion; /**< Version of the i nstalled operating system */

 /** Token reference that is passed to appli cations.
 * This reference is used as a password fo r all further directives to the platform */

 reference applicationToken;
 };

 /**
 * Base environment component definition
 */
 struct EnvironmentComponent
 {
 name virtualComponentName; /**< refe r to section 3.2.2 */
 ior virtualComponentRef;
 /**< CORBA reference to the virtual compone nt (IOR) */

 name realComponentName;
 /**< This must be unique per peripheral, use d for comparison only */

 Technologies and Standards

Revision 1.3, June 2013 354

 indexList linkedComponents;
 /**< This list of indexes indicates, at whi ch position in the component list
 the linked components can be found (In dex counting starts at 0). */

 };

 /**
 * The platform returns a list of all virtual c omponents with this data type
 */
 typedef sequence<EnvironmentComponent> Environm entComponents;

 /**
 * Data-status codes are used to describe the validity of the data records which are
 * transmitted by an event. The data status co des are defined in file <i>codes.idl</i>
 */
 typedef long dataStatus;

 /**
 * Predefinition used for the CUSS data type de finition
 */
 struct dataRecord
 {
 dataStatus status; /**< Status of the dat a in this data record */
 bytestream message; /**< The data itself * /
 };

 /**
 * The CUSS data type definition.
 * This data type is used by card readers, pas sport readers and other devices.
 */
 struct msgDataType
 {
 sequence<dataRecord> records; /**< A lis t of data records */
 };

 /**
 * Type definition for AEA data which is used b y ATB2 and BagTag printers
 */
 typedef bytestream aeaDataType;

 /**
 * Type definition for SVG data which is used b y a General Purpose Printers (GPP)
 */
 typedef bytestream svgDataType;

 /**
 * Type definition for NULL/NIL data.
 * Indicates that no data is sent by an event
 */
 typedef octet nilDataType;

 /**
 * Definition for the <i>registerEvent</i> dire ctive
 */
 enum action
 {
 subscribe_, /**< Used to subscribe/register an event */
 discard_ /**< Used to discard/deregister an event */
 };

 /**
 * The category of the event that has been sent
 */
 enum evtCategory
 {
 alarm_, /**< Manual intervention is required (hard condition) */
 alert_, /**< Manual intervention is not need ed (soft condition)*/
 normal_ /**< Normal event (no error/warning condition) */
 };

 /**
 * The type of the event that has been sent.
 * In CUSS 1.0, if an event is both private and pl atform, choose platform as the event type
 */
 enum evtType
 {
 invalid_, /**< Invalid event (may be used in the returned event of a directive call */
 private_, /**< Private event (received only b y the applicable application) */
 public_, /**< Public event (received only b y all listening applications)*/
 platform_ /**< Platform event (received only by the applicable application and SP SM) */
 };

 Technologies and Standards

Revision 1.3, June 2013 355

 /**
 * The mode of the event that has been sent
 */
 enum evtMode
 {
 solicited_, /**< Event is related to a prev ious directive call */
 unsolicited_ /**< Event is NOT related to an y previous directive call */
 };

 /**
 * This definition is used to specify which eve nts should be received by
 * the instance that acquires a component or re gisters for event(s)
 *
 */
 enum evtFilterType
 {
 all_, /**< Receive all events */
 any_, /**< Receive any event (used for <i>eventWait</i> only) */
 nil_, /**< Receive no event */
 code_, /**< Receive event related to sp ecific event code(s) */
 type_, /**< Receive related to specific event type(s) */
 component_ /**< Receive related to specific component(s) */
 };

 typedef long evtCode; /**< Event codes as defined in <i>codes.idl</i> */
 typedef long evtStatusCode; /**< Status codes as defined in <i>codes.idl</i> */

 /**
 * This definition is more obvious than just t he CORBA::any type.
 * A datastream may consist of: <i>aeaDataType , svgDataType, nilDataType, msgDataType</i>
 * (Datastreams must always be complete and NO T segmented).
 *
 * In CUSS 1.0, datastream may also consist of :
 * string, used for clock data type, fo rmat is (yyyymmddhhmmss) or
 * const long, used for switch data type, v alue is one the following:
 * (OFF= 0, ON=1, OPEN=2, CLOSED=3, YES = 4, N O=5, UNKNOWN=6)
 */
 typedef any datastream;

 /**
 * Predefinition for <i>evtAcquireFilter</i> da ta type
 */
 union evtCodeFilterUnion switch(evtFilterType)
 {
 case all_ :
 case any_ : any filterALLorANY;
 case component_ : iorlist filterCOMPONENT;
 };

 /**
 * Predefinition for <i>evtAcquireFilter</i> da ta type
 */
 struct evtCodeFilterElem
 {
 evtCode eventCode; /**< The ev ent code for event filtering */
 evtStatusCode statusCode; /**< The st atus code for event filtering */
 evtCodeFilterUnion eventFilter; /**< Compon ent filter for the event/status code */
 };

 /**
 * Predefinition for <i>evtAcquireFilter</i> da ta type
 */
 typedef sequence<evtCodeFilterElem> evtCodeFilt er;

 /**
 * Predefinition for <i>evtAcquireFilter</i> da ta type
 */
 union evtTypeFilterUnion switch(evtFilterType)
 {
 case all_ :
 case any_ : any filterALLorANY;
 case component_ : iorlist filterCOMPONENT;
 };

 /**
 * Predefinition for <i>evtAcquireFilter</i> da ta type
 */
 struct evtTypeFilterElem
 {
 evtType eventType; /**< The e vent type for event filtering */

 Technologies and Standards

Revision 1.3, June 2013 356

 evtTypeFilterUnion eventFilter; /**< Compo nent filter for the event type */
 };

 /**
 * Predefinition for <i>evtAcquireFilter</i> da ta type
 */
 typedef sequence<evtTypeFilterElem> evtTypeFilt er;

 /**
 * Predefinition for <i>evtAcquireFilter</i> da ta type
 */
 union evtComponentFilterUnion switch(evtFilterT ype)
 {
 case all_ :
 case any_ : any filterALLorANY;
 case code_ : sequence<evtCode> filterCODE;
 case type_ : sequence<evtType> filterTYPE;
 };

 /**
 * Predefinition for <i>evtAcquireFilter</i> da ta type
 */
 struct evtComponentFilterElem
 {
 ior componentName; /**< The component name for event filtering*/
 evtComponentFilterUnion eventFilter; /**< Event filter for the component name */
 };

 /**
 * Predefinition for <i>evtAcquireFilter</i> da ta type
 */
 typedef sequence<evtComponentFilterElem> evtCom ponentFilter;

 /**
 * This data type is passed to the <i>registerE vent</i> directive to specify
 * which events are received from the platform
 *
 * @note: In CUSS 1.0, implementing event filter ing is not mandatory.
 *
 */
 union evtFilter switch(evtFilterType)
 {
 case all_ :
 case any_ : any filterALLorANY;
 case code_ : evtCodeFilter filterCODE;
 case type_ : evtTypeFilter filterTYPE;
 case component_ : evtComponentFilter filterCO MPONENT;
 };

 /**
 * This data type is passed to the <i>componen t acquire</i> directive to specify
 * which events are received from this virtual component
 *
 * @note: In CUSS 1.0, implementing event filter ing is not mandatory.
 *
 */
 union evtAcquireFilter switch(evtFilterType)
 {
 case all_ :
 case nil_ : any filterALLorNIL;
 case code_ : sequence<evtCode> filterCODE;
 case type_ : sequence<evtType> filterTYPE;
 };

 /**
 * Predefinition for <i>evtDescription</i> data type
 */
 struct evtDescr
 {
 evtCode eventCode; /**< D escription is related to this event code */
 evtStatusCode statusCode; /**< D escription is related to this status code */
 sequence<evtType> eventTypes; /**< D escription is related to this event type */
 name eventDescription; /**< T he textual description of the specified event */
 };

 /**
 * Predefinition for <i>evtDescription</i> data type
 */
 struct evtDescrANY_CODE_TYPE
 {
 evtDescr eventDescr; /**< The event de scription */

 Technologies and Standards

Revision 1.3, June 2013 357

 namelist componentList; /**< The event de scription for these components */
 };

 /**
 * Predefinition for <i>evtDescription</i> data type
 */
 struct evtDescrCOMPONENT
 {
 name componentName; /**< The event description for this component */
 sequence<evtDescr> eventDescr; /**< The event descriptions */
 };

 /**
 * This definition is used to query information about event(s)
 */
 union evtDescription switch(evtFilterType)
 {
 case any_ :
 case code_ :
 case type_ : evtDescrANY_CODE_TYPE event DescrANY_CODE_TYPE;
 case component_ : evtDescrCOMPONENT eventDesc rCOMPONENT;
 };

#ifndef _TIME_BASE_IDL_

 /**
 * Definition of TimeT borrowed from the CORBA Time Service.
 * TimeT represents a simple time value, which is 64 bits in size,
 * and holds the number of 100 nanoseconds tha t have passed since the base time.
 * For absolute time calculations, the base is <i>15 October 1582 00:00 </i>.
 *
 * Note: If your IDL compiler does not yet sup port the <i>long long</i> data type,
 * please compile this module with the p reprocessor definition <i>NOLONGLONG</i>.
 *
 */

#ifdef NOLONGLONG

 struct ulonglong
 {
 unsigned long low;
 unsigned long high;
 };

 typedef ulonglong TimeT;

#else

 typedef unsigned long long TimeT;

#endif // NOLONGLONG
#endif // _TIME_BASE_IDL_

 /**
 * Event definition.
 * This definition is used for all events and return values that are used within the platform
 */
 struct Event
 {
 TimeT timeStamp; /**< Time stamp in UTC format */
 akID kioskID; /**< Iden tification of the kiosk application */
 location kioskLocation; /**< Loca tion of the kiosk (text form) */
 gps gpsLocation; /**< GPS coordinates of the kiosk */

 name componentRef;
 /**< reference of the component if it is the even t source */

 name functionName;
 /**< name of the function/directive which h as been executed
 (this field will be empty for unsolici ted events) */

 evtCode eventCode;
 /**< Application or component state transit ion or the current application
 or component state if no transition ap plies */

 evtMode eventMode; /**< soli cited, unsolicited */
 evtType eventType; /**< inva lid, private, public, platform */
 evtCategory eventCategory; /**< alar m, alert, normal */
 evtStatusCode statusCode; /**< comp onent status or function call status */

 correlation elud; /**< user defined private identification */

 Technologies and Standards

Revision 1.3, June 2013 358

 datastream eventData; /**< data passed with the event */
 };

 /**
 * Event listener definition.
 * This interface is passed on acquiring virtu al components or with the
 * <i>registerEvent</i> directive
 */
 interface evtListener
 {
 /**
 * This function is called whenever an eve nt is sent to the application.
 *
 * @param e The event that is passed t o the application
 */
 void callback(in Event e);
 };
};
#endif // TYPES_IDL

 Technologies and Standards

Revision 1.3, June 2013 359

comps.idl (Interface to CUSS components)

//--- --------------------------
//
// File: comps.idl
//
// Purpose: Interfaces to CUSS components
//
// Date: 17.06.2013
//
// Version: 1.3
//
// Author: IATA Passenger Experience Management Group: CUWG CUSS-TSG
//
// Copyright(c) 2003,2009,2013 International Air T ransport Association, All Rights Reserved
//
// Note: Please refer to the CUSS 1.3 Technic al Specification for more information
//
//--- ---------------------------

#ifndef COMPS_IDL
#define COMPS_IDL

#include "codes.idl"
#include "types.idl"
#include "characteristics.idl"

#pragma prefix "cuss.iata.org"

/**
 * Definition of the interfaces to CUSS Components
 *
 * @note If your version of the IDL compiler treat s Component as a CORBA IDL identifier,
 * you will need to escape it by prepending an underscore (_) to it , that is
 * replace all occurrences of Component with _Component
 */

module Components
{
 /**
 * All components are derived from this interf ace
 *
 */
 interface Component { };

 /**
 * All interfaces for peripherals are derived from this interface
 */
 interface CUSSCntl : Component
 {

 /**
 * Returns the state/status of the virtual c omponent.
 *
 * @param to Timeout value
 * @param appRef A valid application refer ence (token)
 * @param e Return value
 *
 */
 returncodes::rc query (in types::timeout to,
 in types::reference a ppRef,
 out types::Event e);
 };

 /**
 * Interfaces for virtual components that map to peripheral devices
 */
 interface Peripheral : CUSSCntl
 {

 /**
 * Make the virtual component available for the application.
 * The application can subscribe a specific listener associated to the acquired component.
 *
 * @param to Timeout value

 Technologies and Standards

Revision 1.3, June 2013 360

 * @param appRef A valid application refer ence (token)
 * @param ef Specifies which events to subscribe to (event filter)
 * @param el Specifies the event liste ner to be set for this component
 * @param elud User data that is submitt ed with each event sent to the listener
 * @param e Return value
 *
 * @note As implementation of event filter ing is not required in CUSS 1.0,
 * event listener passed to acquire will be used as the receiver
 * for all events related to this co mponent.
 *
 */
 returncodes::rc acquire (in types::timeout t o,
 in types::reference appRef,
 in types::evtAcquir eFilter ef,
 in types::evtListen er el,
 in types::correlati on elud,
 out types::Event e);

 /**
 * Makes the virtual component unavailable t o the application and unsubscribes events
 * relative to the component.
 *
 * @param to Timeout value
 * @param appRef A valid application refer ence (token)
 * @param e Return value
 *
 */
 returncodes::rc release (in types::timeout t o,
 in types::reference appRef,
 out types::Event e);

 /**
 * Set up the virtual component and its prof ile for the application.
 *
 * @param to Timeout value
 * @param appRef A valid application refer ence (token)
 * @param ds Datastream for setting th e component (e.g. PECTABS)
 * @param e Return value
 *
 */
 returncodes::rc setup (in types::timeout to,
 in types::reference a ppRef,
 in types::datastream ds,
 out types::Event e);

 /**
 * Allows to cancel all pending (previously called in asynchronous mode)
 * directives on this specific component.
 *
 * @param appRef A valid application refer ence (token)
 * @param e Return value
 *
 */
 returncodes::rc cancel (in types::reference appRef,
 out types::Event e);

 /**
 * Test the virtual and real component as ex haustive as possible.
 * If the component is a physical device the device driver should be accessed but
 * the physical device should not be exercis ed.
 *
 * @param appRef A valid applica tion reference (token)
 * @param e Return value
 *
 */
 returncodes::rc test (in types::timeout to,
 in types::reference ap pRef,
 out types::Event e);
 };

 /**
 * Interface for virtual components that provi de data to applications
 */
 interface Input
 {

 /**
 * Make the data from the virtual component available to the application.
 *
 * @param to Timeout value
 * @param appRef A valid application refer ence (token)

 Technologies and Standards

Revision 1.3, June 2013 361

 * @param e Return value
 *
 */
 returncodes::rc receive (in types::timeout t o,
 in types::reference appRef,
 out types::Event e);
 };

 /**
 * Interface for virtual components that are a ble to receive data from applications
 */
 interface Output
 {

 /**
 * Send data from the application to the vir tual component.
 *
 * @param to Timeout value
 * @param appRef A valid application refer ence (token)
 * @param e Return value
 *
 */
 returncodes::rc send (in types::timeout to,
 in types::reference ap pRef,
 in types::datastream d s,
 out types::Event e);
 };

 /**
 * Interface for virtual components that inter act with customers/users
 */
 interface User
 {

 /**
 * Make the virtual component available for the user.
 * (e.g. enables a CardReader device for car d insertion)
 *
 * @param to Timeout value
 * @param appRef A valid application refer ence (token)
 * @param e Return value
 *
 */
 returncodes::rc enable (in types::timeout to ,
 in types::reference appRef,
 out types::Event e);

 /**
 * Makes the virtual component unavailable f or the user.
 * (e.g. disables a CardReader device from c ard insertion)
 *
 * @param to Timeout value
 * @param appRef A valid application refer ence (token)
 * @param e Return value
 *
 */
 returncodes::rc disable (in types::timeout t o,
 in types::reference appRef,
 out types::Event e);
 };

 /**
 * Interface for peripherals that don't intera ct with users/customers
 */
 interface Userless { };

 /**
 * Interface for virtual components that use a physical media
 * (e.g. card, coupon, or a paper document)
 */
 interface Media { };

 /**
 * Interface for virtual components that don't use a physical media
 * (e.g. card, coupon, or a paper document)
 */
 interface Medialess { };

 /**
 * Interface for virtual components that trans fer data
 */

 Technologies and Standards

Revision 1.3, June 2013 362

 interface Data { };

 /**
 * Interface for virtual components that don't transfer data
 */
 interface Dataless { };

 /**
 * Interface for virtual components that are a ble to retain media
 */
 interface Capture : Peripheral, Userless, Media , Dataless, Characteristics::Capture
 {

 /**
 * Captures the document in the virtual comp onent that is associated to a secured bin.
 *
 * @param to Timeout value
 * @param appRef A valid application refer ence (token)
 * @param e Return value
 *
 */
 returncodes::rc retain (in types::timeout to ,
 in types::reference appRef,
 out types::Event e);
 };

 /**
 * Interface for virtual components that recei ve media from a Peripheral component
 * and offer it to the user or to another Peri pheral component
 * (e.g. ejecting an ATB coupon from the print er to the ESCROW)
 */
 interface Dispenser : Peripheral, User, Media, Dataless, Characteristics::Dispenser
 {

 /**
 * Offer the document from the virtual compo nent to the user or to another component.
 *
 * @param to Timeout value
 * @param appRef A valid application refer ence (token)
 * @param e Return value
 *
 */
 returncodes::rc offer (in types::timeout to,
 in types::reference a ppRef,
 out types::Event e);
 };

 /**
 * Interface for virtual components that are h olding media (e.g. ATB stocks)
 * and supply it to another Peripheral componen t
 */
 interface Feeder : Peripheral, Userless, Media, Dataless, Characteristics::Feeder
 {

 /**
 * Offer the document from a feeder to anoth er virtual component.
 *
 * @param to Timeout value
 * @param appRef A valid application refer ence (token)
 * @param e Return value
 *
 */
 returncodes::rc offer (in types::timeout to,
 in types::reference a ppRef,
 out types::Event e);
 };

 /**
 * Interface for virtual components used for i nbound data transfer (e.g. digital input)
 */
 interface DataInput : Peripheral, Userless, Med ialess, Data, Input, Characteristics::DataInput { } ;

 /**
 * Interface for virtual components used for o utbound data transfer (e.g. network output)
 */
 interface DataOutput : Peripheral, Userless, Me dialess, Data, Output, Characteristics::DataOutput { };

 /**
 * Interface for virtual components used for i nbound user data transfer (e.g. sound device)
 *
 * @note For the touch screen overlay, whic h is a native device implemented as UserInput,

 Technologies and Standards

Revision 1.3, June 2013 363

 * Only acquire, release and query di rectives should be implemented.
 * All other inherited methods are no t applicable and should return RC_NOT_SUPPORTED
 *
 */
 interface UserInput : Peripheral, User, Mediale ss, Data, Input, Characteristics::UserInput { };

 /**
 * Interface for virtual components used for o utbound user data transfer (e.g. screen)
 */
 interface UserOutput : Peripheral, User, Medial ess, Data, Output, Characteristics::UserOutput { };

 /**
 * Interface for virtual components used for r eading from media (e.g. mag card reader)
 */
 interface MediaInput : Peripheral, User, Media, Data, Input, Characteristics::MediaInput { };

 /**
 * Interface for virtual components used for w riting to media (e.g. receipt printer)
 */
 interface MediaOutput : Peripheral, User, Media , Data, Output, Characteristics::MediaOutput { };

 /**
 * Interface for virtual components used for r eading/writing from/to storage (e.g. harddisk)
 *
 * @note As Storage is a native device,
 * only acquire, release and query di rectives should be implemented.
 * All other inherited methods are no t applicable and should return RC_NOT_SUPPORTED
 *
 */
 interface Storage : Peripheral, Userless, Media , Characteristics::Storage { };

 /**
 * Interface for virtual components handling a display (eg. kiosk computer screen)
 *
 * @note As Display is a native device,
 * only acquire, release and query di rectives should be implemented.
 * All other inherited methods are no t applicable and should return RC_NOT_SUPPORTED
 *
 */
 interface Display : Peripheral, User, Medialess , Characteristics::Display { };

 /**
 * Interface for virtual components handling n etwork access
 *
 * @note As Network is a native device,
 * only acquire, release and query di rectives should be implemented.
 * All other inherited methods are no t applicable and should return RC_NOT_SUPPORTED
 *
 */
 interface Network : Peripheral, Userless, Media less, Characteristics::Network { };

 /**
 * Interface for virtual components representi ng a stand-alone baggage scale
 */

 interface BaggageScale : UserInput, Characteris tics::BaggageScale { };

 /**
 * Base definition for virtual components allo wing self-service baggage check-in
 * @note These are the new definitions for CUSS 1.3. Older definitions are deprecated
 * from CUSS version 1.3 and will be completely removed in CUSS 1.5 latest.
 */

 interface ConveyorSBD : Peripheral, Medialess, Output, Input, Characteristics::ConveyorSBD
 {
 /**
 * Moves current piece of baggage to next position. The next position can
 * be the airports take-away belt (dispatc hing baggage).
 *
 * @param to Timeout value
 * @param appRef A valid active applicat ion reference
 * @param e Return value
 */

 returncodes::rc forward (in types::timeout to,
 in types::referen ce appRef,
 out types::Event e);

 /**
 * Moves current piece of baggage back to the previous postion/user.
 *

 Technologies and Standards

Revision 1.3, June 2013 364

 * @param to Timeout value
 * @param appRef A valid active applicat ion reference
 * @param e Return value
 */

 returncodes::rc backward (in types::timeou t to,
 in types::refere nce appRef,
 out types::Event e);

 /**
 * Processes current piece of baggage on t he conveyor.
 * Allows applications to execute a verifi cation without
 * physically moving a bag back and/or for th.
 * May return RC_NOT_SUPPORTED, if a compo nent does not support
 * or implement that function
 *
 * @param to Timeout value
 * @param appRef A valid active applicat ion reference
 * @param e Return value
 */

 returncodes::rc process (in types::timeou t to,
 in types::refere nce appRef,
 out types::Event e);
 };

 /**
 * Interface for virtual components representi ng the baggage insertion position of a conveyor sys tem
 *
 * @note To better reflect the process of bagga ge check-in,
 * comprising of insertion and weighing, verifi cation and waiting for a free slot on the carry-off belt
 * the definition of the Integrated Baggage Sys tem always has three conveyor segments
 * InsertionBelt, VerificationBelt and ParkingB elt (...even when there is no physical representati on of
e.g. a verification belt)
 */

 interface InsertionBelt : ConveyorSBD, User
 {
 /**
 * Offer the bag from the virtual component (back) to the user
 * (Define own offer() to avoid multiple in heritance)
 *
 */

 returncodes::rc offer (in types::timeout t o,
 in types::reference appRe f,
 out types::Event e);
 };

 /**
 * Interface for virtual components representi ng the baggage verification position of a conveyor system
 *
 * @note To better reflect the process of bagga ge check-in,
 * comprising of insertion and weighing, verifi cation and waiting for a free slot on the carry-off belt
 * the definition of the Integrated Baggage Sys tem always has three conveyor segments
 * InsertionBelt, VerificationBelt and ParkingB elt (...even when there is no physical representati on of
e.g. a verification belt)
 *
 */

 interface VerificationBelt : ConveyorSBD, Userl ess
 {
 };

 /**
 * Interface for virtual components representi ng the baggage parking position of a conveyor syste m
 *
 * @note To better reflect the process of bagga ge check-in,
 * comprising of insertion and weighing, verifi cation and waiting for a free slot on the carry-off belt
 * the definition of the Integrated Baggage Sys tem always has three conveyor segments
 * InsertionBelt, VerificationBelt and ParkingB elt (...even when there is no physical representati on of
e.g. a verification belt)
 *
 */

 interface ParkingBelt : ConveyorSBD, Userless
 {
 };

 /**
 * Interface for virtual components which are able to transport baggage

 Technologies and Standards

Revision 1.3, June 2013 365

 * @note This interface definition is deprecate d from CUSS 1.3. Application-suppliers
 * are encouraged to implement the interfaces In sertionBelt, VerificationBelt and ParkingBelt
 * for self-service baggage check-in support.
 */

 interface Conveyor : Peripheral, User, Mediales s, Data, Input, Characteristics::Conveyor
 {
 /**
 * Moves current piece of baggage to the p arking position.
 *
 * @param to Timeout value
 * @param appRef A valid active applicat ion reference
 * @param e Return value
 */

 returncodes::rc accept (in types::timeout to,
 in types::referenc e appRef,
 out types::Event e) ;

 /**
 * Moves current piece of baggage back to the user.
 *
 * @param to Timeout value
 * @param appRef A valid active applicat ion reference
 * @param e Return value
 */

 returncodes::rc reject (in types::timeout to,
 in types::referenc e appRef,
 out types::Event e) ;

 /**
 * Moves baggage from the parking position to the airport's baggage system.
 *
 * @param to Timeout value
 * @param appRef A valid active applicat ion reference
 * @param e Return value
 */

 returncodes::rc forwardParked (in types::t imeout to,
 in types::r eference appRef,
 out types::E vent e);

 /**
 * Moves all baggage from the parking posi tion back to the user.
 *
 * @param to Timeout value
 * @param appRef A valid active applicat ion reference
 * @param e Return value
 */

 returncodes::rc returnParked (in types::ti meout to,
 in types::re ference appRef,
 out types::Ev ent e);

 /**
 * Allows the user to take back his baggag e.
 *
 * @param to Timeout value
 * @param appRef A valid active applicat ion reference
 * @param e Return value
 */

 returncodes::rc waitForRemovedBaggage (in types::timeout to,
 in types::reference appRef,
 out types::Event e);

 };

 /**
 * This interface is used to query the state a nd/or characteristics
 * of a kiosk application that is configured o n the platform.
 *
 */
 interface Application : CUSSCntl, Characteristi cs::Application { };

 /**
 * This interface is inherited by the Applicat ionManager and the SystemProviderInterface
 */

 Technologies and Standards

Revision 1.3, June 2013 366

 interface ManagementInterface : Component
 {

 /**
 * This is the first directive to be issued by the application
 * to get basic information on the specific CUSS Platform implementation
 * If the application is known by the platfo rm (via configuration),
 * the application reference (token) is retu rned with this call.
 *
 * @param appid Application identifier which must be configured within the platform
 * (for minimal security)
 * @param el Return values
 *
 */
 returncodes::rc level (in types::akID appid,
 out types::Environment Level el);

 /**
 * This is the second directive to be issued by an application
 * to get the list of all implemented CUSS c omponents.
 *
 * @param appRef A valid application refer ence (token)
 * @param ec List of virtual component s which contains the CORBA references (IORs)
 *
 */
 returncodes::rc components (in types::refere nce appRef,
 out types::Enviro nmentComponents ec);

 /**
 * Allows applications to wait for an event to occur.
 * To wait for an event, the application mus t have subscribed to it via the acquire or
 * registerEvent directives. The waitEvent-d irective will be completed at event occurrence
 * (any or all in the list) or when the time out expires.
 *
 * @param to Timeout value (positive a nd negative values have the same effect for this di rective)
 *
 * @param appRef A valid application refer ence (token)
 * @param ef Specifies the event(s) to wait for
 * @param e Return value
 *
 * @note In CUSS 1.0, implementing event f iltering is not mandatory.
 */
 returncodes::rc waitEvent (in types::timeout to,
 in types::referen ce appRef,
 in types::evtFilt er ef,
 out types::Event e);

 /**
 * Generate an event to a system manager.
 *
 * @param appRef A valid application refer ence (token)
 * @param ie Event to be generated
 * @param oe Return value
 *
 */
 returncodes::rc generateEvent(in types::refe rence appRef,
 in types::Even t ie,
 out types::Even t oe);

 /**
 * Returns a description of an event.
 *
 * @param appRef A valid application refer ence (token)
 * @param ef Specifies the event(s) to query
 * @param ed Returned event descriptio n(s)
 *
 * @note In CUSS 1.0, the implementation o f queryEvent is not mandatory.
 * In this case, this function shoul d return RC_NOT_SUPPORTED.
 */
 returncodes::rc queryEvent (in types::refere nce appRef,
 in types::evtFil ter ef,
 out types::evtDes cription ed);

 /**
 * Subscribe to or discards from receiving a ny related event notification. The use
 * of this directive has an additive effect, which means that a call will not supersede
 * a previous call but, instead, subscribe f or previous event(s) plus the one(s) in the
 * current call. All subscriptions done with this directive will be received, within the
 * application, via a single listener.
 *
 * @param appRef A valid application refer ence (token)

 Technologies and Standards

Revision 1.3, June 2013 367

 * @param act Either subscribe or disca rd event(s)
 * @param ef Specifies the event(s) to register i.e. event filter
 * @param el Specifies the event liste ner to be notified
 * @param elud User data that is submitt ed to the listener on each invocation
 * @param ed Return value
 *
 * @note As implementation of event filter ing is not required in CUSS 1.0,
 * event listener passed to register Event directive will be used as the
 * receiver for all application mana ger events. To receive component events,
 * application must register their l istener(s) via the acquire directive.
 */
 returncodes::rc registerEvent(in types::refe rence appRef,
 in types::acti on act,
 in types::evtF ilter ef,
 in types::evtL istener el,
 in types::corr elation elud,
 out types::Even t e);

 };

 /**
 * The definition for the Application Manager Interface.
 * An application uses this interface for inte raction with the platform.
 * To access the platform use: <i>corbaloc:<ki osk-IP address>:20000/ApplicationManager</i>
 */
 interface ApplicationManager : ManagementInterf ace
 {
 /**
 * The application now wants to (re-)initial ize. This is a blocking call.
 * After this directive returns the applicat ion is allowed to initialize.
 * This handling ensures that initialization is serialized for all applications.
 */
 returncodes::rc initrequest (in types::refer ence appRef,
 out types::Event e);

 /**
 * This directive is used by the application to request a state change from
 * CUSS Application Manager, which will chang e the application state if request is approved.
 *
 * @param appRef A valid application refer ence (token)
 * @param ie Input of application stat e transition code
 * @param oe Return value
 *
 */
 returncodes::rc notify (in types::reference appRef,
 in types::akID id,
 in types::evtCode ec ,
 out types::Event e) ;
 };

 /**
 * The definition for the System Manager Inter face.
 * A System Manager Application uses this inte rface for interaction with the platform
 * To access the platform use: <i>corbaloc:<ki osk-IP address>:20001/ServiceProviderInterface</i>
 *
 * @note In CUSS 1.0, the ServiceProviderInt erface is available for both
 * Service Provider System Manager and Application Provider System Manager
 */
 interface ServiceProviderInterface : Management Interface
 {

 /**
 * Ask CUSS application manager to load an a pplication
 * (realize Load state transition in applica tion state diagram).
 *
 * @param to Timeout value
 * @param appRef A valid application refe rence (token)
 * @param whichApp The identifier of the ap plication to be loaded
 * @param e Return value
 *
 */
 returncodes::rc load (in types::timeout to,
 in types::reference ap pRef,
 in types::akID whichAp p,
 out types::Event e);

 /**
 * Suspend an application.
 *
 * @param appRef A valid application refe rence (token)
 * @param whichApp The identification of th e application to be suspended

 Technologies and Standards

Revision 1.3, June 2013 368

 * @param e Return value
 *
 */
 returncodes::rc suspend (in types::reference appRef,
 in types::akID whic hApp,
 out types::Event e);

 /**
 * Suspend all applications.
 *
 * @param appRef A valid application refe rence (token)
 * @param e Return value
 *
 */
 returncodes::rc suspendAll (in types::referen ce appRef,
 out types::Event e);

 /**
 * Resume a suspended application to its pre vious state.
 *
 * @param appRef A valid application refe rence (token)
 * @param whichApp The identifier of the ap plication to be resumed
 * @param e Return value
 *
 */
 returncodes::rc resume (in types::reference appRef,
 in types::akID which App,
 out types::Event e);

 /**
 * Resume all suspended applications to thei r previous state.
 *
 * @param appRef A valid application refe rence (token)
 * @param e Return value
 *
 */
 returncodes::rc resumeAll (in types::referen ce appRef,
 out types::Event e);

 /**
 * Stops (unloads) an application.
 *
 * @param appRef A valid application refe rence (token)
 * @param whichApp The identifier of the ap plication to be stopped
 * @param e Return value
 *
 */
 returncodes::rc stop (in types::reference ap pRef,
 in types::akID whichAp p,
 out types::Event e);

 /**
 * Stops (unloads) all applications.
 *
 * @param appRef A valid application refe rence (token)
 * @param e Return value
 *
 */
 returncodes::rc stopAll (in types::reference appRef,
 out types::Event e);
 };
};
#endif // COMPS_IDL

 Technologies and Standards

Revision 1.3, June 2013 369

codes.idl (Definitions of CUSS codes)

//--- --------------------------
//
// File: codes.idl
//
// Purpose: Definition of CUSS codes
//
// Date: 17.06.2013
//
// Version: 1.3
//
// Author: IATA Passenger Experience Management Group: CUWG CUSS-TSG
//
// Copyright(c) 2003,2009,2013 International Air T ransport Association, All Rights Reserved
//
// Note: Please refer to the CUSS 1.3 Technic al Specification for more information
//
//--- ---------------------------

#ifndef CODES_IDL
#define CODES_IDL

#pragma prefix "cuss.iata.org"

/** Directive related return codes */

module returncodes
{
 typedef long rc; /**< Type definition for inter face return codes */

 const long RC_OK = 0; /**< Directi ve accepted */
 const long RC_REFERENCE = -1; /**< Invalid application reference */
 const long RC_STATE = -2; /**< Applica tion is not in the correct state to invoke this dir ective */
 const long RC_DENIED = -3; /**< Access denied (application is not allowed to use that comp onent) */
 const long RC_PARAMETER = -4; /**< Error i n parameters (e.g. wrong event passed) */
 const long RC_ANY_PARAMETER = -5; /**< Error i n CORBA::any type */
 const long RC_LISTENER = -6; /**< No list ener set */
 const long RC_SHARE = -7; /**< Request in wrong share mode (component may be blocked by a ny
application) */
 const long RC_UNAUTHORIZED = -8; /**< Unautho rized command within data stream (SVG or AEA) */
 const long RC_ERROR = -9; /**< Any err or that is not covered by errors defined above */
 const long RC_NOT_SUPPORTED = -10; /**< Directi ve is not supported (i.e. not implemented) */
};

/** Data related states */

module datastatus
{
 const long DS_OK = 0; /**< Data is OK */
 const long DS_CORRUPTED = 1; /**< Data is corrupted */
 const long DS_INCOMPLETE = 2; /**< Data is incomplete */
 const long DS_ZEROLENGTH = 3; /**< Data is of length zero */

 const long DS_DOCUMENT_AUTHENTICATION_FAILED = 4; /**< Authentication of document data failed */
 const long DS_INVALID = 5; /**< Document read but a security feature is missing
*/
 const long DS_MISMATCH = 6; /**< Document read but data inconsistent wit h
security feature */

 const long DS_TYPES_FOID_ISO = 100; /**< ISO track data with FOID Data truncatio n */
 const long DS_TYPES_PAYMENT_ISO = 200; /**< ISO track data without truncation */
 const long DS_TYPES_DISCRETIONARY_ISO = 300; /**< ISO track data with DISCRETIONARY Data
truncation */

 const long DS_TYPES_FOID_JIS2 = 14100; /**< JIS-2 track data with FOID Data truncat ion */
 const long DS_TYPES_PAYMENT_JIS2 = 14200; /**< JIS-2 track data without truncation */
 const long DS_TYPES_DISCRETIONARY_JIS2 = 14300; /**< JIS-2 track data with DISCRETIONARY Dat a
truncation */

 const long DS_TYPES_ISO = 0; /**< ISO encoded data */
 const long DS_TYPES_VING = 1000; /**< VING encoded data */
 const long DS_TYPES_TESSA = 2000; /**< TESSA encoded data */
 const long DS_TYPES_SAFLOK = 3000; /**< SAFLOK encoded data */
 const long DS_TYPES_TIMELOX = 4000; /**< TIMELOC encoded data */
 const long DS_TYPES_KABA_ILCO = 5000; /**< KABA iLco encoded data */

 Technologies and Standards

Revision 1.3, June 2013 370

 const long DS_TYPES_KABA_ILCO_FOLIO = 6000; /**< KABA iLco (folio) encoded data */

 const long DS_TYPES_IMAGE_IR = 7000; /**< Infrared image */
 const long DS_TYPES_IMAGE_VIS = 8000; /**< Visible image */
 const long DS_TYPES_IMAGE_UV = 9000; /**< Ultraviolet image */
 const long DS_TYPES_IMAGE_PHOTO = 10000; /**< Photo image */
 const long DS_TYPES_IMAGE_COAX = 11000; /**< Coaxial image */
 const long DS_TYPES_CODELINE = 12000; /**< Codeline data */
 const long DS_TYPES_BARCODE = 13000; /**< Barcode data */
 const long DS_TYPES_MIWA = 14000; /**< Miwa data */
 const long DS_TYPES_JIS2 = 14000; /**< JIS2 data */

 const long DS_TYPES_SCAN_PDF417 = 15000; /**< PDF417 2D barcode */
 const long DS_TYPES_SCAN_AZTEC = 15100; /**< Aztec 2D barcode */
 const long DS_TYPES_SCAN_DMATRIX = 15200; /**< Datamatrix 2D barcode */
 const long DS_TYPES_SCAN_QR = 15300; /**< QR Code 2D barcode */
 const long DS_TYPES_SCAN_CODE39 = 15400; /**< Code39 1D barcode */
 const long DS_TYPES_SCAN_CODE128 = 15500; /**< Code128 1D barcode */
 const long DS_TYPES_SCAN_CODE2OF5 = 15600; /**< Code2of5 1D barcode */

 const long DS_TYPES_ISO7816 = 16000; /**< Communication protocols for PICC/RFID/N FC
devices */

 const long DS_TYPES_PRINT_2S_PAGE = 16100; /**< 2-Sided Single-page printing */
 const long DS_TYPES_PRINT_2S_MULTI = 16200; /**< 2-Sided Multi-page printing */
 const long DS_TYPES_PRINT_PDF = 16300; /**< Adobe PDF print format */

 const long DS_TYPES_MIFARE = 17000; /**< Communication protocols for PICC/RFID/N FC
devices */
 const long DS_TYPES_SUICA = 17010; /**< Communication protocols for PICC/RFID/N FC
devices */

 const long DS_TYPES_ISO15961 = 18000; /**< IATA RFID baggage tag devices */
 const long DS_TYPES_RP1745 = 18010; /**< IATA Baggage Service Messages Format */
 const long DS_TYPES_WEIGHT = 18020; /**< Baggage Weight from Scale or Conveyor * /
 const long DS_TYPES_HEAVYTAG = 18030; /**< Special Heavy Tag for baggage */
 const long DS_TYPES_SBDAEA = 18040; /**< AEA-SBD control language */
 const long DS_TYPES_SBDCUSS = 18050; /**< CUSS-SBD control language */

 const long DS_TYPES_EPASSPORT_DG1 = 20100; /**< e-Passport format */
 const long DS_TYPES_EPASSPORT_DG2 = 20200; /**< e-Passport format */
 const long DS_TYPES_EPASSPORT_DG3 = 20300; /**< e-Passport format */
 const long DS_TYPES_EPASSPORT_DG4 = 20400; /**< e-Passport format */
 const long DS_TYPES_EPASSPORT_DG5 = 20500; /**< e-Passport format */
 const long DS_TYPES_EPASSPORT_DG6 = 20600; /**< e-Passport format */
 const long DS_TYPES_EPASSPORT_DG7 = 20700; /**< e-Passport format */
 const long DS_TYPES_EPASSPORT_DG8 = 20800; /**< e-Passport format */
 const long DS_TYPES_EPASSPORT_DG9 = 20900; /**< e-Passport format */
 const long DS_TYPES_EPASSPORT_DG10 = 21000; /**< e-Passport format */
 const long DS_TYPES_EPASSPORT_DG11 = 21100; /**< e-Passport format */
 const long DS_TYPES_EPASSPORT_DG12 = 21200; /**< e-Passport format */
 const long DS_TYPES_EPASSPORT_DG13 = 21300; /**< e-Passport format */
 const long DS_TYPES_EPASSPORT_DG14 = 21400; /**< e-Passport format */
 const long DS_TYPES_EPASSPORT_DG15 = 21500; /**< e-Passport format */
 const long DS_TYPES_EPASSPORT_DG16 = 21600; /**< e-Passport format */
 const long DS_TYPES_EPASSPORT_DG17 = 21700; /**< e-Passport format */
 const long DS_TYPES_EPASSPORT_DG18 = 21800; /**< e-Passport format */
 const long DS_TYPES_EPASSPORT_DG19 = 21900; /**< e-Passport format */
 const long DS_TYPES_EPASSPORT_DG20 = 22000; /**< e-Passport format */

 const long DS_TYPES_EPAYMENT = 23000; /**< E-Payment: CuPaySchema.xsd */
};

/**
 * Event codes for all components and applications .
 * These codes are used to indicate the states or state changes for all components
 */

module eventcodes
{
 // virtual component state transition codes

 const long EC_OK = 0 ; /**< Used in the returned event for calls to susp endAll,
resumeAll or stopAll directives */
 const long EVENTHANDLING_READY = 1 ; /**< Used for soft conditions and Ok only */
 const long UNAVAILABLE_RELEASED_PLATFORM = 2 ; /**< Released by any authorized platform componen t */
 const long EVENTHANDLING_UNAVAILABLE = 3 ; /**< Caused by a hard condition */
 const long UNAVAILABLE_RELEASED_APPLICATION = 4 ; /**< Component released by the application */
 const long READY_RELEASED_APPLICATION = 5 ; /**< Component released by the application */
 const long READY_RELEASED_PLATFORM = 6 ; /**< Released by any authorized platform componen t */
 const long RELEASED_READY = 7 ; /**< State change caused by a call to <i>acquire< /i> */

 Technologies and Standards

Revision 1.3, June 2013 371

 const long RELEASED_UNAVAILABLE = 8 ; /**< State change caused by a call to <i>acquire< /i> */

 // application state transition codes

 const long INITIALIZE_DISABLED = 1 01; /**< State transition DISABLE */
 const long AVAILABLE_DISABLED = 1 02; /**< State transition DISABLE */
 const long ACTIVE_DISABLED = 1 03; /**< State transition DISABLE */
 const long UNAVAILABLE_AVAILABLE = 1 04; /**< State transition WAIT */
 const long AVAILABLE_ACTIVE = 1 05; /**< State transition ACTIVATE*/
 const long ACTIVE_AVAILABLE = 1 06; /**< State transition WAIT */
 const long INITIALIZE_STOPPED_STOP = 1 07; /**< State transition STOP */
 const long AVAILABLE_STOPPED_STOP = 1 08; /**< State transition STOP */
 const long ACTIVE_STOPPED_STOP = 1 09; /**< State transition STOP */
 const long SUSPENDED_STOPPED_STOP = 1 10; /**< State transition STOP */
 const long DISABLED_STOPPED_STOP = 1 11; /**< State transition STOP */
 const long SUSPENDED_AVAILABLE = 1 12; /**< State transition RESUME*/
 const long AVAILABLE_SUSPENDED = 1 13; /**< State transition SUSPEND */
 const long INITIALIZE_STOPPED_RESTART = 1 14; /**< State transition RESTART */
 const long AVAILABLE_STOPPED_RESTART = 1 15; /**< State transition RESTART */
 const long ACTIVE_STOPPED_RESTART = 1 16; /**< State transition RESTART */
 const long DISABLED_STOPPED_RESTART = 1 17; /**< Not used in CUSS 1.0. */
 const long SUSPENDED_STOPPED_RESTART = 1 18; /**< State transition RESTART */
 const long STOPPED_INITIALIZE = 1 19; /**< State transition LOAD */
 const long DISABLED_INITIALIZE = 1 20; /**< State transition LOAD */
 const long UNAVAILABLE_STOPPED_RESTART = 1 21; /**< State transition RESTART */
 const long UNAVAILABLE_DISABLED = 1 22; /**< State transition DISABLE */
 const long UNAVAILABLE_SUSPENDED = 1 23; /**< State transition SUSPEND */
 const long INITIALIZE_SUSPENDED = 1 24; /**< Not used in CUSS 1.0 */
 const long SUSPENDED_DISABLED = 1 25; /**< Not used in CUSS 1.0 */
 const long SUSPENDED_INITIALIZE = 1 26; /**< Not used in CUSS 1.0 */
 const long SUSPENDED_UNAVAILABLE = 1 27; /**< State transition RESUME */
 const long UNAVAILABLE_STOPPED_STOP = 1 28; /**< State transition STOP */
 const long INITIALIZE_UNAVAILABLE = 1 29; /**< State transition CHECK */
 const long AVAILABLE_UNAVAILABLE = 1 30; /**< State transition CHECK */
 const long DISABLED_SUSPENDED = 1 31; /**< Not used in CUSS 1.0 */

 // Application/component state codes

 const long RELEASED = 2 01; /**< State RELEASED (peripheral) */
 const long UNAVAILABLE = 2 02; /**< State UNAVAILABLE (peripheral & applicatio n) */
 const long READY = 2 03; /**< State READY (peripheral) */
 const long STOPPED = 2 04; /**< State STOPPED (application) */
 const long SUSPENDED = 2 05; /**< State SUSPENDED (application) */
 const long DISABLED = 2 06; /**< State DISABLED (application) */
 const long INITIALIZE = 2 07; /**< State INITIALIZE (application) */
 const long AVAILABLE = 2 08; /**< State AVAILABLE (application) */
 const long ACTIVE = 2 09; /**< State ACTIVE (application) */
 const long BUSY = 2 10; /**< Transient state BUSY (peripheral) */

 // Additional codes for CUSS 1.2

 const long ACTIVE_ACTIVE = 1 32; /**< State transition ACTIVE (persistent) */
 const long STATE_EXPLANATION = 1 000; /**< Tell CLA why application is in current st ate */
 const long ACTIVE_TRANSFER = 1 001; /**< Request CLA transfer ACTIVE to new applic ation */
 const long TRANSACTION_EXPLANATION = 1 002; /**< Tell CLA what happened in most recent tra nsaction
*/
 const long VERSION_EXPLANATION = 1 003; /**< Tell CLA the version string for the appli cation */

 // Additional codes for CUSS 1.3

 const long ACTIVE_UNAVAILABLE = 1 33; /**< Go unavailable while active in a transact ion */
 const long UPDATE_REQUEST = 1 004; /**< Tell CLA the application wishes to update */

};

/**
 * Status codes for all virtual device components.
 * These codes are used to describe the states for all virtual components
 */

module statuscodes
{
 const long OK = 0; / **< Scope: public (private for solicited eve nts) */
 const long TIMEOUT = 1; / **< Scope: private (directive related) */
 const long WRONG_STATE = 2; / **< Scope: private + platform */
 const long CANCELLED = 3; / **< Scope: private */
 const long SOFTWARE_ERROR = 4; / **< Scope: private + platform */
 const long ALMOST_OUT_OF_TIME = 5; / **< @note NOT used in CUSS 1.0 */
 const long OUT_OF_SEQUENCE = 6; / **< Scope: private */

 const long MEDIA_JAMMED = 101; / **< Scope: public */

 Technologies and Standards

Revision 1.3, June 2013 372

 const long MEDIA_MISPLACED = 102; / **< Scope: private + platform (platform only for
userless classes) */
 const long MEDIA_PRESENT = 103; / **< Scope: private */
 const long MEDIA_ABSENT = 104; / **< Scope: private */
 const long MEDIA_HIGH = 105; / **< Scope: public */
 const long MEDIA_FULL = 106; / **< Scope: public */
 const long MEDIA_LOW = 107; / **< Scope: public */
 const long MEDIA_EMPTY = 108; / **< Scope: public */
 const long MEDIA_DAMAGED = 109; / **< Scope: public */
 const long MEDIA_INCOMPLETELY_INSERTED = 110; / **< Scope: private */

 // definitions for baggage belt

 const long BAGGAGE_FULL = 120; /**< Scope: public */
 const long BAGGAGE_UNDETECTED = 121; /**< Scope: private + platform */
 const long BAGGAGE_PRESENT = 122; /**< Scope: private */
 const long BAGGAGE_ABSENT = 123; /**< Scope: private */
 const long BAGGAGE_OVERSIZED = 124; /**< Scope: private + platform */
 const long BAGGAGE_ILLICIT_WEIGHT_CHANGE = 125; /**< Scope: private @note Used only for Con veyor-
not for new ConveyorSBD-Component, deprecated for C USS 1.3 */
 const long BAGGAGE_READY_FOR_TAKE_IN = 126; /**< Scope: public @note Used only for Conv eyor- not
for new ConveyorSBD-Component, deprecated for CUSS 1.3 */
 const long BAGGAGE_TOO_MANY_BAGS = 127; /**< Scope: private + platform */
 const long BAGGAGE_DELIVER = 128; /**< Scope: private @note Used only for Con veyor-
not for new ConveyorSBD-Component, deprecated for C USS 1.3 */
 const long BAGGAGE_UNEXPECTED_BAG = 129; /**< Scope: private + platform */
 const long BAGGAGE_TOO_HIGH = 130; /**< Scope: private + platform */
 const long BAGGAGE_TOO_LONG = 131; /**< Scope: private + platform */
 const long BAGGAGE_TOO_FLAT = 132; /**< Scope: private + platform */
 const long BAGGAGE_TOO_SHORT = 133; /**< Scope: private + platform */
 const long BAGGAGE_PARKED = 134; /**< Scope: private @note Used only for Con veyor-
not for new ConveyorSBD-Component, deprecated for C USS 1.3 */
 const long BAGGAGE_INVALID_DATA = 135; /**< Scope: private + platform */
 const long BAGGAGE_TRANSPORT_FAILED = 136; /**< Scope: private + platform @note Used o nly for
Conveyor- not for new ConveyorSBD-Component, deprec ated for CUSS 1.3 */
 const long BAGGAGE_WEIGHT_OUT_OF_RANGE = 137; /**< Scope: private + platform */
 const long BAGGAGE_JAMMED = 138; /**< Scope: private + platform */
 const long BAGGAGE_EMERGENCY_STOP = 139; /**< Scope: private + platform */
 const long BAGGAGE_RESTLESS = 140; /**< Scope: private + platform */
 const long BAGGAGE_TRANSPORT_BUSY = 144; /**< Scope: private + platform */
 const long BAGGAGE_MISTRACKED = 145; /**< Scope: private + platform */
 const long BAGGAGE_UNEXPECTED_CHANGE = 146; /**< Scope: private + platform */
 const long BAGGAGE_ACCEPTED = 147; /**< Scope: private + platform */
 const long BAGGAGE_DELIVERED = 148; /**< Scope: private + platform */
 const long BAGGAGE_INTERFERENCE_USER = 149; /**< Scope: private + platform */
 const long BAGGAGE_INTRUSION_SAFETY = 150; /**< Scope: private + platform */

 const long FORMAT_ERROR = 201; / **< Scope: private + platform (platform only for
output classes) */
 const long LENGTH_ERROR = 202; / **< Scope: private + platform (platform only for
output classes) */
 const long DATA_MISSING = 203; / **< Scope: private + platform (platform only for
output classes) */
 const long PHYSICAL_ERROR = 204; / **< @note NOT used in CUSS 1.0 */
 const long DATA_PRESENT = 205; / **< Scope: private */

 const long CONSUMABLES = 301; / **< Scope: public */
 const long HARDWARE_ERROR = 302; / **< Scope: public */
 const long CRITICAL_SOFTWARE_ERROR = 303; / **< Scope: public */
 const long NOT_REACHABLE = 304; / **< Scope: public */
 const long NOT_RESPONDING = 305; / **< Scope: public */
 const long THRESHOLD_ERROR = 306; / **< Scope: public */
 const long THRESHOLD_USAGE = 307; / **< Scope: public */
 const long CONFIGURATION_ERROR = 308; / **< Scope: public */
 const long SESSION_TIMEOUT = 309; / **< Scope: private + platform (application r elated)
*/
 const long KILL_TIMEOUT = 310; / **< Scope: private + platform (application r elated)
*/

 const long CUSS_MANAGER_REQUEST = 801; / **< Scope: private + platform */
 const long SP_SYSTEM_MANAGER_REQUEST = 802; / **< Scope: private + platform */
 const long AL_SYSTEM_MANAGER_REQUEST = 803; / **< Scope: private + platform */
 const long CL_APPLICATION_REQUEST = 804; / **< Scope: private + platform */
 const long AL_APPLICATION_REQUEST = 805; / **< Scope: private + platform */

 // base definition for application generated ev ents (technical)
 const long APPLICATION_TECHNICAL_FIRST = 400; / **< Scope: private */
 const long APPLICATION_TECHNICAL_LAST = 499; / **< Scope: private */

 // base definition for application generated ev ents (security)
 const long APPLICATION_SECURITY_FIRST = 500; / **< Scope: private */

 Technologies and Standards

Revision 1.3, June 2013 373

 const long APPLICATION_SECURITY_LAST = 599; / **< Scope: private */

 // base definition for application generated ev ents (business)
 const long APPLICATION_BUSINESS_FIRST = 900; / **< Scope: private */
 const long APPLICATION_BUSINESS_LAST = 999; / **< Scope: private */
};

#endif // CODES_IDL

 Technologies and Standards

Revision 1.3, June 2013 374

characteristics.idl (Virtual component characterist ics)

//--- --------------------------
//
// File: characteristics.idl
//
// Purpose: CUSS virtual components characterist ics
//
// Date: 17.06.2013
//
// Version: 1.3
//
// Author: IATA Passenger Experience Management Group: CUWG CUSS-TSG
//
// Copyright(c) 2003,2009,2013 International Air T ransport Association, All Rights Reserved
//
// Note: Please refer to the CUSS 1.3 Technic al Specification for more information
//
//--- ---------------------------

#ifndef CHARACTERISTICS_IDL
#define CHARACTERISTICS_IDL

#pragma prefix "cuss.iata.org"

#include "codes.idl"
#include "types.idl"

/** Definition of the Virtual Component Characteris tics
 *
 * @note: Some attributes may not be applicable de pending on the corresponding real component.
 * Non-applicable values are either represe nted as:
 * -1 (for attributes of type long or string) or
 * nonApplicableValue (for attributes of enumerated types).
 */

module Characteristics
{

 /** Common Characteristic definition
 Manufacturer specifications for system mana gement purposes but not restricted to it.
 */
 interface Manufacturer
 {

 /** Component identification for use by sys tem manager.
 This identification gives a more precis e definition of the component, e.g. ATB-PRINTER-BIN 1
 */
 readonly attribute string realComponentIden tification;

 /** Describes whether the firmware can be u pdated or not */
 readonly attribute boolean downloadableFirm ware;

 /** Version of firmware/software */
 readonly attribute string firmwareVersion;

 /** Name of manufacturer */
 readonly attribute string manufacturerName;

 /** Model number of hardware component */
 readonly attribute string modelNumber;

 /** Serial number of hardware component */
 readonly attribute string serialNumber;
 };

 /** Common Characteristic definition */
 interface MediaType
 {
 /** Definition of media types */
 enum MediaTypeDef
 {
 nonApplicableMediaType, /**< Non applicab le characteristic value */

 MagneticStripe, /**< Documents wi th a magnetic stripe */
 Chip, /**< Documents wi th a chip like RF-Baggage tags */

 Technologies and Standards

Revision 1.3, June 2013 375

 Printed, /**< Any printed document (OCR/BarCode/Plain paper) */
 JIS /**< JIS cards */
 };

 /** Attribute containing one media type */
 readonly attribute MediaTypeDef type;
 };

 /** Definition of the list of media types */
 typedef sequence <MediaType> MediaTypeListDef;

 /** Common Characteristic definition */
 interface MediaTypeList
 {
 /** List of media types */
 readonly attribute MediaTypeListDef mtList;
 };

 /** Common Characteristic definition */
 interface Location
 {

 /** Supported image types */
 enum ImageType
 {
 nonApplicableImageType, /**< Non applicab le characteristic value */

 notAvailable, /**< no image ava ilable */
 BMP, /**< Microsoft bi tmap file */
 JPEG, /**< JPEG file */
 PNG, /**< Portable net work graphics file */
 Flash /**< Macromedia f lash file */
 };

 /** URL to location image */
 readonly attribute string Map;

 /** The type of the image as specified abov e */
 readonly attribute ImageType mapType;

 /** URL to usage image/animation */
 readonly attribute string howTo;

 /** The type of the image/animation as spec ified above */
 readonly attribute ImageType howToType;

 /** Definition of where to find components */
 enum LocationType
 {
 nonApplicableLocationType, /**< Non app licable characteristic value */

 inKiosk, /**< device is located in the kiosk */
 inArea /**< device is located outside the kiosk */
 };

 /** Where to find the component */
 readonly attribute LocationType componentLo cation;
 };

 /** Common Characteristic definition */
 interface ComponentFonts
 {
 /** CUSS supported barcodes */
 enum BarcodeStandard
 {
 nonApplicableBarcodeStandard, /**< Non ap plicable characteristic value */

 Code39, /**< Barcod e definition */
 Code128, /**< Barcod e definition */
 Code2of5 /**< Barcod e definition */
 };

 /** specifies which of the above standards was used */
 readonly attribute BarcodeStandard usedStan dard;

 /** Specification of a single font */
 struct FontSpec
 {
 string fontName; /**< Na me of the font */
 sequence<long> fontSizes; /**< Li st of available font sizes, not set if font is a ve ctor font
*/

 Technologies and Standards

Revision 1.3, June 2013 376

 boolean vectorFont; /**< Fo nt attribute */
 boolean bold; /**< Fo nt attribute */
 boolean italic; /**< Fo nt attribute */
 boolean underlined; /**< Fo nt attribute */
 boolean strikeThrough; /**< Fo nt attribute */
 boolean reverse; /**< Fo nt attribute */
 boolean superScript; /**< Fo nt attribute */
 boolean subScript; /**< Fo nt attribute */
 long colorDepth; /**< Fo nt attribute */
 long spacing; /**< Fo nt attribute */
 long characterLength; /**< Fo nt attribute (0 = variable length, n = fixed length) */
 };

 /** FontList declaration */
 typedef sequence<FontSpec> FontList;

 /** Fonts available from this component */
 readonly attribute FontList Fonts;
 };

 /** Common Characteristic definition */
 interface Bin
 {

 /** Describes the maximum number of documen ts a bin can hold */
 readonly attribute long BinSize;

 /** Shows the high threshold of the bin if corresponding sensor is installed
 Refers to the MEDIA_HIGH event in <i>co des.idl</i>
 */
 readonly attribute long AllmostFullLevel;

 /** Shows low threshold of the bin if corre sponding sensor is installed
 Refers to the MEDIA_LOW event in <i>cod es.idl</i>
 */
 readonly attribute long AllmostEmptyLevel;

 /** Shows the current number of documents i n the bin.
 * This value is adjusted by the platform automatically
 * after documents have been printed.
 */
 readonly attribute long currentNoOfDocument s;
 };

 /** Common Characteristic definition */
 interface IOMode
 {
 /** MediaInput/MediaOutput supported modes */
 enum InputOutputMode
 {
 nonApplicableInputOutputMode, /**< Non ap plicable characteristic value */

 CheckIn, /**< Check- in mode for ATB printers */
 Revalidation /**< Revali dation mode for ATB printer */
 };

 /** The currently used mode for reading/wri ting. */
 readonly attribute InputOutputMode mode;

 /**
 * Set the input/output mode for ATB print ers.
 *
 * @param appRef A valid application ref erence
 * @param mode The input/output mode t o be used (check-in or Revalidation)
 *
 */
 returncodes::rc setIOMode(in types::referen ce appRef, in InputOutputMode mode);
 };

 /** Capture characteristics */
 interface Capture : Bin, Manufacturer { };

 /** DataInput characteristics
 *
 * @note In CUSS 1.0, supportedDataTypes attr ibute is missing.
 * The following data types are assumed :
 * string as clockDataType for Clock device
 * const long as switchDataType for sensor devices
 *
 */
 interface DataInput : Manufacturer

 Technologies and Standards

Revision 1.3, June 2013 377

 {
 /** time difference in hours relative to GM T
 *
 * @note This applies only to Clock devic e
 *
 */
 readonly attribute long timeZone;
 };

 /** DataOutput characteristics */
 interface DataOutput : Manufacturer { };

 /** Dispenser characteristics */
 interface Dispenser : Bin, Location, Manufactur er
 {
 /** Dispenser types */
 enum DispenserType
 {
 nonApplicableDispenserType, /**< Non app licable characteristic value */

 real_, /**< User ca n't access media without an <i>offer-command</i> */
 virtual_ /**< User ca n access media all the time */
 };

 /** Specifies the kind of the dispenser */
 readonly attribute DispenserType kind;
 };

 /** Feeder characteristics */
 interface Feeder : Bin, Manufacturer { };

 /** Description of data types used by the Media Input characteristics */
 enum DataType
 {
 nonApplicableDataType, /**< Non applicable characteristic value */

 AEA, /**< CUSS - AEA data type*/
 MSG, /**< CUSS - MSG data type*/
 SVG /**< CUSS - SVG data type*/
 };

 /** Definition of the list of data types */
 typedef sequence <DataType> DataTypeList;

 /** MediaInput characteristics */
 interface MediaInput : IOMode, MediaTypeList, C omponentFonts, Location, Manufacturer
 {
 /** Describes the type of media reader */
 enum ReaderType
 {
 nonApplicableReaderType, /**< Non appli cable characteristic value */

 Motorized, /**< Motorized reader like standard card readers */
 DIP, /**< Manual in sertion or removal of documents */
 Swipe, /**< Document has to be swiped through reader manually */
 Contactless, /**< Document is read via an antenna (radio frequency) */
 FlatbedScan, /**< Standard scanner technology or camera */
 PenScan /**< Standard barcode reader technology */
 };

 /** The kind of reader which is handled by this component */
 readonly attribute ReaderType typeOfReader;

 /** The list of data types supported by thi s component */
 readonly attribute DataTypeList supportedDa taTypes;

 /** Describes the type of data stream that is supported by this component.
 *
 * @note This attribute is not used in CUSS 1. 0
 *
 */
 readonly attribute DataType setupDataType;

 /** The number of tracks that can be read b y the components.
 \li 1 indicates only track 1 is readabl e
 \li 2 indicates track 1 and track 2 are readable
 \li 3 indicates tracks 1 to 3 are reada ble, and so on
 */
 readonly attribute long numberOfTracks;
 };

 Technologies and Standards

Revision 1.3, June 2013 378

 /** MediaOutput characteristics */
 interface MediaOutput : IOMode, MediaTypeList, ComponentFonts, Location, Manufacturer
 {
 /** Media types */
 enum MediaType
 {
 nonApplicableMediaType, /**< Non applicab le characteristic value */

 Ticket, /**< TAT- or ATB ticket */
 BoardingPass, /**< Boarding pas s */
 GeneralPurposeDoc, /**< General purp ose document */
 BaggageTag, /**< Baggage tag */
 InsertedDoc, /**< Document ins erted by the user */
 Card /**< Any type of card */ };

 /** Attribute containing the media type */
 readonly attribute MediaType type;

 /** The list of data types supported by thi s component */
 readonly attribute DataTypeList supportedDa taTypes;

 /** Size of the internal data buffer */
 readonly attribute long bufferSize;

 /** The number of tracks that can be writte n by the components.
 \li 1 indicates only track 1 is writabl e
 \li 2 indicates track 1 and track 2 are writable
 \li 3 indicates tracks 1 to 3 are writa ble, and so on
 */
 readonly attribute long numberOfTracks;

 /** The minimum length of a document measur ed in MilliMeters */
 readonly attribute long minDocumentLength;

 /** The maximum length of a document measur ed in MilliMeters */
 readonly attribute long maxDocumentLength;

 /** Printing technology specification
 *
 * @note attribute for mediaTransferType is missing in CUSS 1.0 IDL.
 * Instead, its value (DirectTherm al or ThermalTransfer)
 * should be inserted somewhere in side the string representing
 * Manufacturer::ModelNumber attri bute. This was agreed upon
 * in order to keep CUSS 1.0 IDLs backward-compatible to 0.2.1.
 *
 */
 enum MediaTransferType
 {
 nonApplicableMediaTransferType, /**< Non applicable characteristic value */

 DirectThermal, /**< Ther mal printing device */
 ThermalTransfer /**< Ribb on printing device */
 };

 /** The maximum printing size in X directio n measured in MilliMeters */
 readonly attribute long maxPrintSizeX;

 /** The maximum printing size in Y directio n measured in MilliMeters */
 readonly attribute long maxPrintSizeY;

 /** Printing orientations */
 enum PrintOrientationDef
 {
 nonApplicablePrintOrientation, /**< Non a pplicable characteristic value */

 Portrait, /**< print ing orientation */
 Landscape /**< print ing orientation */
 };

 /** The current print orientation. */
 readonly attribute PrintOrientationDef prin tOrientation;

 /**
 * Sets the printing orientation to be use d by this component.
 *
 * @param appRef A valid application reference
 * @param orientation The printing orient ation (Portrait or Landscape)
 *
 */
 returncodes::rc setPrintOrientation(in type s::reference appRef, in PrintOrientationDef orienta tion);

 Technologies and Standards

Revision 1.3, June 2013 379

 };

 /** Storage characteristics */
 interface Storage : Manufacturer
 {

 /** Specifies the total size available for an application on a disk */
 readonly attribute long size;

 /** Specifies the path to writeable/readabl e location
 (all path specifications end with a sep arator, e.g. slash or backslash)
 */
 readonly attribute string path;
 };

 /** Display characteristics */
 interface Display : Location, Manufacturer
 {
 /** Resolution list definition */
 typedef sequence<long> ResolutionList;

 /** List of supported screen resolutions
 \li 800 indicates a resolution of 800 b y 600
 \li 1024 indicates a resolution of 1024 b y 768
 \li 1280 indicates a resolution of 1280 b y 1024
 \li 1600 indicates a resolution of 1600 b y 1200

 @attention Currently only one screen reso lution should be used if the
 touch screen overlay is not au tomatically re-calibrated
 */
 readonly attribute ResolutionList displayReso lution;

 /** Currently used screen resolution. */
 readonly attribute long currentResolution;

 /**
 * Sets a new resolution for the display.
 *
 * @param appRef A valid application re ference
 * @param resolution The screen resolution to be used by the application
 *
 */
 returncodes::rc setScreenResolution(in types: :reference appRef, in long resolution);

 /** Physical screen size measured in MilliMet er */
 readonly attribute long screenDiagonal;
 };

 /** UserInput characteristics */
 interface UserInput : Location, Manufacturer { };

 /** UserOutput characteristics */
 interface UserOutput : Location, Manufacturer { };

 /** Network characteristics
 Standard attributes only for this component .
 */
 interface Network : Manufacturer { };
 /** Application characteristics */
 interface Application : Manufacturer
 {
 /** Kiosk Application identification */
 readonly attribute types::akID identificati on;

 /** Definition of the different address typ es */
 enum ContactAddressType
 {
 nonApplicableContactAddress, /**< Non a pplicable characteristic value */

 None, /**< No ad dress available */
 Pager, /**< Page address */
 EMail, /**< EMail address */
 Phone, /**< Phone address */
 Postal, /**< Posta l address */
 Fax, /**< Fax a ddress */
 Network, /**< Netwo rk address (Remote network support application) */
 URL, /**< Unifo rm Resource Locator (Internet support application) */
 IOR /**< Inter operable Object Reference (CORBA support applicatio n) */
 };

 /** Definition for a single contact field * /

 Technologies and Standards

Revision 1.3, June 2013 380

 struct Contact
 {
 string name; /**< Name of the person to contact */
 string company; /**< Name of the company to contact */
 string note; /**< Unspecif ic note on person or company */
 string address; /**< Address to be used */
 ContactAddressType type; /**< Specifie s the type of the address */
 };

 /** Definition for the contact list */
 typedef sequence <Contact> ContactList;

 /** The list of all available contacts */
 readonly attribute ContactList allContacts;

 /** Specifies the first of IP-Port range th at can be used by this application */
 readonly attribute long firstIPPort;

 /** Specifies the last of IP-Port range tha t can be used by this application */
 readonly attribute long lastIPPort;
 };

 /** Scale characteristics */

 interface BaggageScale
 {
 /** The maximum weight of the baggage (in g rams) */
 readonly attribute long maxWeight;
 };

 /** ConveyorSBD characteristics
 * @note This is the new definition for CUSS 1. 3. Older definitions are deprecated
 * from CUSS version 1.3 and will be completely removed in CUSS 1.5 latest.
 */

 interface ConveyorSBD : Location, Manufacturer
 {
 /** The maximum weight of the baggage (in g rams) */
 readonly attribute long maxWeight;

 /** The maximum width of baggage (in millim eters) */
 readonly attribute long maxWidth;

 /** The maximum height of baggage (in milli meters) */
 readonly attribute long maxHeight;

 /** The maximum length of baggage (in milli meters) */
 readonly attribute long maxLength;

 /** The maximum number of bags a conveyor c an handle */
 readonly attribute long maxBags;

 /** If true, conveyor has a security barrier (for user safety) */
 readonly attribute boolean barrierCapable;

 /** If true, conveyor system can detect intru sions at the front/user side (insertion) */
 readonly attribute boolean userInterferenceCa pable;

 /** If true, conveyor system can detect intru sions behind the front/user side (verification/park ing) */
 readonly attribute boolean safetyIntrusionCap able;
 };

 /** Conveyor characteristics
 * @note This interface definition is deprecate d from CUSS 1.3. Application-suppliers
 * are encouraged to implement the ConveyorSBD c haracteristics interface
 * for self-service baggage check-in support.
 */

 interface Conveyor : Location, Manufacturer
 {
 /** Conveyor types */
 enum ConveyorType
 {
 nonApplicableConveyorType, /**< Non ap plicable characteristic value */

 Scale, /**< Convey or has a scale only */
 BCR, /**< Convey or has a barcode reader only */
 Scale_BCR, /**< Convey or has a scale and a barcode reader */
 Scale_ParkPosition, /**< Convey or has a scale and a park position for bags */
 BCR_ParkPosition, /**< Convey or has a barcode reader and a park position for bag s */

 Technologies and Standards

Revision 1.3, June 2013 381

 Scale_BCR_ParkPosition /**< Convey or has a scale, a barcode reader and a park positio n for
bags */
 };

 /** the maximum weight of the baggage */
 readonly attribute long maxWeight;

 /** Specifies the kind of the conveyor */
 readonly attribute ConveyorType typeOfConve yor;

 /** the maximum width of baggage */
 readonly attribute long maxWidth;

 /** the maximum height of baggage */
 readonly attribute long maxHeigth;

 /** the maximum length of baggage */
 readonly attribute long maxLength;

 /** the guarenteed number of bags that can be stored at least in the parking position */
 readonly attribute long guarenteedNoOfBags;

 /** the actual number of bags in the parkin g position */
 readonly attribute long currentNoOfBagsPark ed;
 };

};

#endif // CHARACTERISTICS

 Technologies and Standards

Revision 1.3, June 2013 382

CUSS.PAYMENT.XSD (Generic Payment XML messages)

Please refer to Section 7.19 for sample messages created with this schema definition.

 Technologies and Standards

Revision 1.3, June 2013 383

CUSS.SBD.XSD (Scales and Self Bag Drop)

Please refer to Section 7.17 and 7.18 for sample messages created with this schema definition.

 Technologies and Standards

Revision 1.3, June 2013 384

Appx D: AEA Printer Standard and Usage

CUSS mandates that a kiosk and CUSS platform be equipped to printer AEA printer format
Boarding Pass documents (See Section 4.1.1.) For more information please refer to the following
AEA standards documents available from http://www.aea.be:

• Automated Ticket & Boarding Pass (ATB) Technical Specifications (2009)
• Parametric Baggage Tag Data Concept (2002)
• Self Service Specifications (August 2001)
• Self Bag Drop Specifications (AEA2012-2 March 2013)
• IATA Resolution 792 (BCBP)

AEA printers must support all the requirements of IATA Resolution 792 for bar coded boarding
passes, including a minimum print resolution of 200dpi. A CUSS platform may use any AEA-
compliant printer implementation (emulated in software or via printer firmware) to print
documents according to the specification.

The CUSS Technical Specification also uses the AEA standard for communicating with Self Bag
Drop (SBD) devices. This usage is covered under Chapter 7.16 Integrated Baggage Conveyors.
This Appendix only covers AEA as used for printing.

Version of AEA Printer Specification Supported
CUSS 1.3 platforms must support AEA2009 or later for ATB printers and bagtag printers.

CUSS 1.2 platforms must support AEA2008 for ATB and bagtag printers. For CUSS 1.0 and
CUSS 1.1 compliant kiosks, the platform must support the AEA99 version of the specification.

The platform must also implement the AEA Self Service Specifications (resource management
via context switching) to manage multiple applications, regardless of the version of the AEA
specification.

The CUSS platform may optionally support a newer version of the standard (such as AEA2010
or later) if this newer version is backwards compatible with the minimum AEA versions
indicated above, and continues to meet the additional guidelines listed below.

To report which version of the AEA standard is available for use by applications, the platform
must include the version as part of the firmwareVersion characteristic of all components of the
AEA printer device (bagtag or ATB) with the following syntax (do not include comments in
brackets):

• AEA2009 [or later version required for CUSS 1.3 printers]
• AEA2008 [or later version required for CUSS 1.2 printers]

 Technologies and Standards

Revision 1.3, June 2013 385

• AEA1999
• AEA2001
• AEA2002 [for previous versions of CUSS]

The native AV command in AEA must also be supported by the platform and must report the
version of AEA supported by the printer components. For example, the AV command would
return IERAVOK09#ATB in accordance with the AEA specification, indicating AEA2009
support.

If an application attempts to use a feature of a newer AEA version that is not reported as being
available by the platform in this fashion, the application may receive AEA errors when
attempting to load or print AEA streams.

PCX Logo Format Specification

This section is based on CUSS 1.0 Addendum A.1.8 and A.1.20.

The AEA standard does not clearly define the logo format to be used by AEA printers. All CUSS
platforms and applications must only use PCX format logos that abide by the following
guidelines:

1. Logo source resolution is 200dpi (8d/mm.) It is up to the CUSS platform provider to
convert the logo data appropriately to appear properly on the printer their platform uses.
This resolution is based on existing AEA printers and common ticket printers. This
resolution is crisp enough to provide suitable output even on higher-resolution GPP
printers providing AEA emulation.

2. PCX format must be black/white, 1bpp, where a "1" bit indicates a black dot.

3. The specific format of the LT stream can be either "LTxxyyyy<HEX-encoded PCX

data>" or "LTxxyyyy<binary PCX data>". For example, since the PCX header starts
0x0A000101 (more or less), the LT stream would start, for logo 42, as
"LT42yyyy0A000101..." for hex mode or as
"LT42yyyy<0x0A><0x00><0x01><0x01>..." for binary mode. CUSS applications can
use either mode, and it is up to the platform provider to convert as needed for the format
expected by their physical printer (or AEA emulation.)

4. The yyyy length value indicates the length of the LT stream data. ie if your PCX files is

2300 bytes, then the text encoding is 4600 bytes, and the stream would be
"LT4246000A0000101...". If your PCX file is binary and is 4700 bytes, the stream would
be “LT4700<0x0a><0x00>…”

5. The maximum PCX logo file size is 4999 bytes if hex mode is used, and 9999 bytes for

binary mode.

 Technologies and Standards

Revision 1.3, June 2013 386

The PCX file format supports five separate header format versions, all of which support
monochrome files as described above. When monochrome data is used, the image data encoding
is consistent across all versions. The PCX versions are:

0=PC Paintbrush v2.5
2=PC Paintbrush v2.8 w palette information
3=PC Paintbrush v2.8 w/o palette information
4=PC Paintbrush/Windows
5=PC Paintbrush v3.0+

PCX version 0 supports all requirements of CUSS/AEA. Later versions introduce support for
256+ colors, custom palettes, and other features that are not used in CUSS.

It is up to the platform provider to ensure that valid monochrome PCX logo data loads and prints
on the printer used in their kiosk, regardless of what limitations exist within that printer with
regards to PCX header/version support. In other words, it is up to the CUSS platform to adjust or
“normalize” the PCX data it receives from application so that it does not cause problems on the
printers that the platform uses to print AEA documents and bag tags.

As an example of a potential problem that could occur, some PCX image versions include a 256-
color palette after image data. This extra data is not technically needed for monochrome images,
but it is compliant with the PCX standard may be included in data sent by some application. A
platform provider would need to strip this extra data if, for example, that data caused problems
on their printer. Here are some additional examples of adjustments the platform might need to
make to accommodate the limitations of their AEA printer:

• Add/Remove 769-byte palette at end of data
• Reset internal header version if a specific value is required by printer.
• Adjust coordinate margins / resolution in header if needed by printer
• Set header 16-color palette values if specific values needed by printer
• Reject as invalid other PCX data that is *NOT* monochrome

Please consult the PCX file format specification for more information.

Barcode Orientation

This section is based on CUSS 1.0 Addendum A.1.21 and the AEA2007 specification.

The AEA99 specification merely makes the following comment: “Note for orientation: The
lower left corner of the barcode is equal to the lower left corner of the position matrix e.g. C05.”

For horizontal barcodes, this is clear and indicates that the rectangular barcode printout extends
up and to the right of the element position.

 Technologies and Standards

Revision 1.3, June 2013 387

For vertical barcodes, the only mention is of a 270 degree rotation. The rotation guideline for
template Text elements specifies that this is a counterclockwise rotate around the lower left
corner of the barcode. As such, the printed vertical barcode extends down and to the right of the
element position, as demonstrated by the following approximate diagram for position C40:

Horizontal barcodes are AEA barcode types 0-9, and vertical barcodes are barcode types Q-Z.

PDF417 2D Barcode Printing

This section is based on CUSS 1.0 Addendum A.1.9 and the AEA specification.

A CUSS 1.3 platform must support AEA2009, and it must support the PDF417 2D barcode
printing capability of AEA2009.

PDF417 barcodes were first introduced in AEA2002, but this support was poorly defined. To
clarify this original definition, CUSS 1.0 listed the specific requirements and syntax for printing
PDF417 2D barcodes. This CUSS 1.0 clarification was then included as part of the AEA2007
specification and later versions, including AEA2009 as require by CUSS 1.3.

For clarity, the description of PDF417 printing support taken from CUSS 1.0 and from
AEA2007/AEA2008 is included here:

The required implementation on CUSS platforms is:

1. BARCODE POSITION - As defined in AEA, the coordinate is a standard row/column
location. In horizontal mode, the bottom left corner of the barcode coincides with the
bottom left corner of the character at that row/column. In vertical mode, the upper left
corner of the barcode is the bottom left corner of the row/column, i.e. the barcode is
underneath the row completely.

2. BARCODE TYPE - As defined in AEA, this is "6" for a horizontal barcode and "R" for

a vertical barcode.

 Technologies and Standards

Revision 1.3, June 2013 388

3. BARCODE HEIGHT - As defined in AEA, the height of the horizontal barcode, in
millimeters (1-99.) Because some vendors may not use PDF417 libraries that support
exact height specifications, the actual barcode height should be as close as reasonably
possible to the requested height.

4. BARCODE MAGNIFICATION (1-9) - This is the more ambiguous aspect of a 2D

barcode. This magnification parameter affects the amount of error-correcting codes
(ECC) overhead included within the barcode. A higher value should result in a wider
barcode with more redundancy. For PDF417, the following values are used:

1 == PDF417 ECC LEVEL 0
2 == PDF417 ECC LEVEL 1
3 == PDF417 ECC LEVEL 2
4 == PDF417 ECC LEVEL 3
5 == PDF417 ECC LEVEL 4
6 == PDF417 ECC LEVEL 5
7 == PDF417 ECC LEVEL 6
8 == PDF417 ECC LEVEL 7
9 == PDF417 ECC LEVEL 8

5. BARCODE RATIO (1-3) - This indicates the size of the elements within the 2D
barcode, which indicates a “fine”, “regular” or “coarse” 2D barcode appearance, with
respect to the height and width of the codeword modules. Here is a recommended
approximation for a 200dpi printer with the standard 3:1 PDF417 module ratio:

1 – “fine” – rows that are 0.75mm high (6 pixels)
2 – “regular” – rows that are 1.125mm high (9 pixels)
3 – “coarse” – rows that are 1.5mm high (12 pixels)

Please refer to the AEA2009 specification for information on printing additional 2D barcodes
types such as QRCode or Aztec.

Barcode128 subtypes 128A, 128B, 128C

This section is based on CUSS 1.0 Addendum A.1.25.

There is lack of clarity in the AEA specification regarding Code 128 implementation on AEA
documents. The required implementation on CUSS platforms is as follows:

• If the barcode data is all numeric, print as Code 128C.
• If the barcode data also contains lowercase characters, print as Code 128B
• In all other cases, print as Code 128A.

 Technologies and Standards

Revision 1.3, June 2013 389

Please note that CUSS 1.3 uses AEA2009. The AEA barcode identifiers “4” and “V”, which in
previous versions of AEA referred to Barcode 128 without check digit, are no longer available
(they now refer to new DataMatrix and Aztec 2D barcodes.) Applications that previously used 4
and V must now use 7 and W and include the correct Barcode 128 check digit.

Multi-document AEA print streams

This section is based on CUSS 1.0 Addendum A.1.39.

The ability to share data and print multiple documents within a single AEA data stream is a valid
and useful feature of the AEA printer standard. For example, baggage tags are often printed in
sequences of consecutive tag numbers.

A CUSS kiosk supporting the AEA standard (AEA2008 required for CUSS 1.2) must support the
multi-document printing capability of the AEA standard, and must generate properly-formed
AEA responses to such requests. A compliant CUSS platform must not return
FORMAT_ERROR in response to a valid AEA stream that produces multiple documents

Printing multiple coupons from separate stock types (Feeders) however, is not permitted within a
single directive: if printing multiple coupons then only single stock type (such as BoardingPass)
is permitted. An application that wants to use this feature of AEA should also meet these
conditions:

• Verify that the bin size of the Dispenser (see Characteristics) is sufficient to hold all the
documents contained in the AEA stream before issuing the send() directive.

• Parse the AEA response string from the platform to determine which documents were
actually printed.

• If the Dispenser cannot hold all the documents, first prompt the user to remove existing
documents before issuing the new print request.

• If the Dispenser cannot hold all the documents even when empty (based on Bin
characteristics), the application must break up the AEA stream into separate requests.

• Verify that any timeouts given in the send() requests are long enough to allow multiple
documents to print.

Even if multiple coupons are printed in a single print request, the CUSS component will generate
only one AEA status completion message in the component event.

 Technologies and Standards

Revision 1.3, June 2013 390

Extended code page language support for AEA print s treams

The AEA2008 and AEA2009 specifications allow an AEA printer to optionally support extended
code pages for printing documents including alternate languages and characters.

Air carriers that wish to use extended language support should ensure that the documents
produced at CUSS kiosks comply with any applicable IATA Resolution, Recommended
Practice, and local airline/airport as well as interline partner requirements.

Extended language/codepage printing would usually be a requirement for a certain markets that
would require local language support, such as domestic travel within many countries (such as
Russia, China, Japan, etc.)

To print an AEA document in an extended language, a CUSS application must:

• Request the language using the setup() command sending an “EP#FONT=x” request
• Interpret the platform response to the EP request to see if the request was successful
• If successful, send the print data encoded in the requested codepage
• The application can query the current font using the “ES” request

Extended language printing is an optional component of the AEA print language: CUSS-
compliant kiosks are not required to support extended language printing and printers and
platforms can be compliant with AEA2009 even if they do not support printing in extended code
pages.

If the platform is able to support the extended code page requests, it must use the following
codepages (taken from the AEA2009 specification):

EP#FONT=L Latin (CP-850)
EP#FONT=R Cyrillic (Windows-1251)
EP#FONT=C Chinese (Windows-936)
EP#FONT=K Korean (Windows-949)
EP#FONT=J Japanese (Windows-932)
EP#FONT=A Arabic (Windows-1256)

If a CUSS application requests an extended language that the platform or printer does not
support, then the platform shall provide the correct ERRE error response to the application.

An application must then implement the desired business logic to handle the case where it is
operating on a CUSS kiosk that does not support printing documents in the language the
application requested.

If an application does not specify a font using the ES command, or specifies a font that is not
supported, the printer shall use the default codepage for printing the document. The AEA

 Technologies and Standards

Revision 1.3, June 2013 391

specification does not specify a default codepage, so CUSS applications cannot assume a single
default codepage exists and is consistent across all kiosk printers.

Here are additional comments regarding extended codepage printing in AEA2009:

• When the application does not issue an EP command to set the codepage, the default

codepage used will vary from printer to printer, as this default behaviour is not specified
in the AEA standard. Hence CUSS application must not expect a a consistent, default
codepage across all CUSS kiosks.For example, these different codepages are used:

a. IER640 ATBSSB134: CP-437
b. IER567 96629-1.70: CP-850
c. IBM CUSS GPP AEA Emulation: Windows-1252

• AEA documents are printed with left-to-right printing, even of the codepage language is

right-to-left. A future version of AEA may clarify or alter this behavior.
• The field length indicator in the pectab refers to the byte length of the print stream

request for that field. It does not refer to the length of the printed output. This is an
important consideration when printing double-width characters, or multi-byte code pages.

• The extended codepage print also applies to the contents of templates.

Here is an example documented printed with the Cyrillic codepage, and its equivalent CP data
stream as represented in Windows-1252:

CP#A#01W#CP#C01#02LUFTHANSA #04Êîâàë¸â/Äìèòðèé MR#07/Ðîëüô MR #08LH#09SEN
#0DMUC#0FRETURN#10KBR78#11MUC#14HAM#15SEN #17HAM#1ALH#1CX#1D064 #21C#22C#2429SEP#27G12

#2A2100#2D3C #2F3C #41Íåêóðÿùèõ#4BC#4C002 #4D002 #4FLH 064 /002 #71áèçíåñ#860#8D3#B6
#C1*#C300#C400#C7ETKT 220 2134274420#C8etix etkt etix etkt #C9ELECTRONIC TICKET 220

2134274420#F1272#FA1 12111 1 #FF220#H8M1BRUHN/OLAF MR EZNFODI MUCHAMLH 0064 272C3C

002 3010#

Additional language examples will be provided as made available to the TSG-CUSS technical
group.

 Technologies and Standards

Revision 1.3, June 2013 392

Restrictions on AEA Commands

The CUSS standard limits which AEA commands an application is permitted to send to the
printer, in order to maintain the state of the print for all applications. For this reason, only the
following commands are permitted:

Printer devices (AEA2009 or later):

setup() directive (see Section 3.6.6 for details):

CT, PT, PC, PS, LT, LC, LS, FT, FC, FS, FA, FR, TT, TC, TA, AV, ZS, PV,
RI, RC
ES, EP
BT (without parameters)
BTT (bag tag printing only)

send() directive (see Section 3.6.8.2 for details):

CP, CI, TK, TI, TR
BTP (bag tag printing only)

Self Bag Drop (AEA2012-2 or later):

There are no restrictions on AEA commands sent to Self Bag Drop (SBD) devices.

 Technologies and Standards

Revision 1.3, June 2013 393

Appx E: Technologies and Standards

Introduction

A CUSS Platform must support all of the following presentation technologies and standards.
These technologies have been selected to allow a single application to run on multiple standard
and commercially available browser technologies such as Flash and Silverlight, and within the
standard Java environment. This allows predicatable and consistent behaviour for application
providers.

Here is a summary list of what a CUSS 1.3 kiosk must provide, and the CUSS application
suppliers can depend on when developing CUSS 1.3 applications.

• The standard CUSS browser is Microsoft Internet Explorer 8 (IE8), as defined below
• The standard CUSS java is Oracle JRE7 (7u21 or later) for command line and browser

plugin environments, as defined below

• Adobe Flash 11 (version 11.7.7 or later) is available
• Adobe Shockwave 12 (version 12.0 or later) is available
• Adobe AIR 3 (version 3.7 or later) is available
• Apple Quicktime 7 (version 7.7.3 or later) is available
• Windows Media Player 11 (vesion 11.0 or later) is available
• Microsoft Silverlight 5 (release 5.1 or later) is available
• Adobe PDF Reader XI (version 11.0 or later) is available
• AEA2009 is available for document printing (ATB and BTP)
• AEA2012-2 is available for Self Bag Drop devices
• Google Chrome 27 is available in addition to the standard CUSS browser
• Google Chrome Frame 21 is available within the standard CUSS browser

 Technologies and Standards

Revision 1.3, June 2013 394

Interim Changes to the CUSS Technologies and Standa rds List

Generally speaking, the list above includes the latest versions available from the tool publishers
that retain support for Windows XP, as list at the time of the final draft of an updated CUSS
Technical Specification.

The CUSS standard is published infrequently compared to the pace of change in application
development technologies and standards. To ensure that the CUSS Technical Specification can
be kept up to date with new industry trends or with external requirements such as security
guidance, the versions and technologies in this Appendix may be amended after publication.

To amend this appendix, the IATA Passenger Experience Management Group (PEMG) may
publish the following document.

 CUSS Technical Specification 1.3: Errata and Technologies Updates

When and if published, that document will supercede the content of this Appendix subject to the
wording and content of the Document

Software Licensing and Distribution

This CUSS Standard requires various Tools and Technologies be available as part of a CUSS
compliant environment. These tools and technologies come from 3rd parties, such as Microsoft,
Oracle, Adobe, and Google.

Each external technology is subject to its provider’s requirements regarding commercial
licensing, redistribution, end user license agreements, export restrictions, security and data
collection and data privacy policies, updating and patching, liability waivers and disclaimers,
warranties, and other legal and commercial requirements for use.

Even though these tools are required as a component of a compliant CUSS kiosk, IATA and this
CUSS Technical Standard do not abrogate or replace any of these 3rd party usage requirements.

It is up to each platform provider, platform operator, and application provider to review,
understand, and comply with any such requirements as applicable to installing, deploying, and
using 3rd party technologies at a specific site.

 Technologies and Standards

Revision 1.3, June 2013 395

The Standard CUSS Java Environment

To ensure compatibility and portability from platform to platform and kiosk to kiosk, previous
versions of the CUSS standard restricted and enforced that only certain, specific versions of the
Sun/Oracle Java environment be available to applications.

This approach, which mandated specific versions 1.3.1_06 and 1.5.0_04 of the Java Runtime
Environment, meant that CUSS kiosks were unable to keep Java up to date with security patches,
time zone changes, and other ongoing fixes critical to the java environment. With release 1.3 of
the CUSS Technical Standard, the java requirements are changing significantly:

CUSS 1.3 defines a Standard CUSS Java Environment. This standard java is Oracle JRE7,
which must run as the default java environment for the java plugin within the standard
CUSS browser, and from the system command line environment. The move to JRE7
provides these benefits:

• Uses a version of Java that is supported and updated by the vendor
• Allows CUSS sites to keep Java up to date with security fixes
• Operates correctly in modern systems like IE8 and Windows 7

• Provides backwards compatibility for applications that are designed for earlier Java versions
• Provides new features for application developers deploying into CUSS 1.3 environments

To be compliant with CUSS 1.3, kiosks must comply with the following requirements:

Java Runtime Environment (Command Line)

1. The kiosk must provide a command line java runtime environment

2. The default java available from the kiosk command line must be JRE7. The “default version” is

considered the version that is run when “java.exe” is invoked on the kiosk without a specific path.

3. The version of JRE7 on the command line must be JRE 7u21 or later. Newer major releases (such
as JRE8) must not be installed. New minor releases of JRE7 are permitted.

4. CUSS 1.3 kiosks are not required to provide earlier versions of the command line java listed in

CUSS 1.0, 1.1 and 1.2.

5. If earlier versions of the command line java runtime environment are provided, they must be of
the versions in this list:

a. Java Runtime 1.3.1_06 (CUSS 1.0)
b. Java Runtime 1.3.1_19 (CUSS 1.1)

 Technologies and Standards

Revision 1.3, June 2013 396

c. Java Runtime 1.3.1_20 (CUSS 1.2)
d. Java Runtime 1.5.0_04 (CUSS 1.2)
e. Java Runtime JRE6u12 (CUSS 1.2)

6. If earlier versions of the command line java runtime are provided, they must be invoked by

specifying the full path name of that version’s java.exe file.

Java Runtime Environment (Browser Plugin)

1. The kiosk must provide a java runtime environment browser plugin and the default system

browser (IE8) must be configured to use that browser plugin.

2. The default java available from the browser plugin must be JRE7. The “default version” is
considered the version that is run when the browser plugin object is invoked with class ID
“clsid:8AD9C840-044E-11D1-B3E9-00805F499D93”

3. The version of JRE7 in the browser must be JRE 7u21 or later. Newer major releases (such as
JRE8) must not be installed. New minor releases of JRE7 are permitted.

4. The JRE7 browser plugin must be the only plugin installed on the system. The earlier versions
required for CUSS 1.0, 1.1 and 1.2 must not be present and must be uninstalled.

5. The JRE7 plugin must run properly if the application loads the browser plugin with any of the
following class IDs (representing the versions used in CUSS 1.0-1.2.)

a. clsid:CAFEEFAC-0013-0001-0006-ABCDEFFEDCBA
b. clsid:CAFEEFAC-0013-0001-0019-ABCDEFFEDCBA
c. clsid:CAFEEFAC-0013-0001-0020-ABCDEFFEDCBA
d. clsid:CAFEEFAC-0015-0000-0004-ABCDEFFEDCBA
e. clsid:8AD9C840-044E-11D1-B3E9-00805F499D93

6. The JRE7 browser plugin must be configured to avoid any popup messages or confirmations

when the browser page is invoking any of the above class IDs.

Java Runtime Environment (General Comments)

A CUSS 1.3 platform provider must not accommodate any request from a CUSS application
provider to install or use any version of java other than the JER7 command line and browser plug
in environments described here.

 Technologies and Standards

Revision 1.3, June 2013 397

A CUSS application that does not operate correctly with the java environments described above
is not a CUSS-1.3-compliant application.

The Standard CUSS Browser Environment

In previous versions of CUSS 1.0, 1.1 and 1.2, the CUSS Technical Specification did not list a
particular browser environment requirement, allowing any browser to be used.

In CUSS 1.2, to help provide a more consistent and predictable, the CUSS Technical
Specification is mandating a specific browser technology and environment as the default
environment.

CUSS 1.3 defines a Standard CUSS Browser. This standard browser is Microsoft Internet
Explorer 8, which must run as the default browser environment in which browser-based
applications run. The move to IE8 provides these benefits:

• Uses a browser version that is supported and updated by the vendor

• Allows CUSS sites to keep their browser up to date with security fixes
• Provides a predictable environment for all CUSS applications (compared to earlier versions of

CUSS, where different sites used different browsers and versions.)
• Provide a more modern browser with better standards compliant and compatibility
• Operates correctly on modern environments like Windows 7
• Provides new features for application developers deploying into CUSS 1.3 environments

CUSS 1.3 also defined an alternate CUSS Browser, which must be deployed alongside the
Standard CUSS Browser and available as an option for CUSS application providers. The
alternate browser must be Google Chrome 27 or later.

This alternate browser must be the browser environment only for those applications where the
application provider has specifically requested to run their application in the alternate CUSS
browser when running on CUSS 1.3 kiosks.

Adding a new alternate browser to CUSS 1.3 provides these benefits:

• A more modern and standards compliant browser environment than is offered by IE8
• Continues to operate under the Windows XP environment
• Provides more capability for application suppliers wishing to deploy under CUSS 1.3
• A more responsive browser environment for heavy usage of javascript

Browser Environment (General Comments)

 Technologies and Standards

Revision 1.3, June 2013 398

• The CUSS-TS does not mandate a particular build or patch of IE8. A CUSS 1.3 platform

provider can deploy any updates to IE8 as needed to maintain security fixes and patches
up to date.

• Platform providers must include the standard CUSS browser (IE8) as the default browser
on the kiosk and must also include the alternate CUSS browser (Chrome 27+) as an
available browser on the kiosk.

• A CUSS 1.3 platform provider must not accommodate any request from a CUSS
application provider to install or use any version of Internet Explorer other than IE8, as
this mode of operation is not support by Microsoft.

• A CUSS 1.3 platform provider must not accommodate any request from a CUSS
application provider to install or used any other browser that is not Google Chrome.

• The CUSS platform provider must deploy Google Chrome Frame as a component of the
alternate CUSS browser, so that application providers can opt to run with the Coogle
Chrome engine inside the default CUSS browser.

o Important Note: At the time of publication of CUSS 1.3, Google had recently announced
withdrawal of support for Google Chrome Frame as of January 2014. Application suppliers may
wish to take this into account and opt to deploy in the native Google Chrome browser instead of
Google Chrome Frame.

• The CUSS platform can deploy a default browser container that is based on the IE8
engine but is not required to host the applications in the actual Internet Explorer 8
browser. This allows platforms to deploy appropriate settings and application control
features as needed for application control.

• A browser-based CUSS application that does not operate correctly in the default CUSS

browser (IE8) or the alternet CUSS browser (Chrome 27) is not compliant with CUSS
1.3.

• An application can deploy its own browser if and only if that browser runs entirely within
the java virtual machine environment of the standard CUSS java environment.

• CUSS platform providers may choose to deploy alternate browsers, such as Firefox or

Opera, on their kiosk environment alongside IE8 and Chrome 27, for example, to control
custom applications such as information signage, as long as these other browsers to not
interfere with CUSS applications on the kiosk running in the standard or alternate CUSS
browsers.

 Technologies and Standards

Revision 1.3, June 2013 399

Presentation Tools and Libraries

The use of “-“ in the technology table indicates no change from the previous version of the
CUSS standard. If no earlier version is defined, that technology is not supported in that version
of CUSS.

CUSS 1.3 platforms must provide at least the versions listed in the “1.3 Required Version”
column, and the major version of the tool must be as indicated.

New versions of tools can only be deployed as decided by the CUSS Technical Solution Group
via changes or updates to this Technical Specification document. Application suppliers and
providers cannot assume that a newer version of the tool will be available on kiosks even when
and if an update is available from the Standards body or Organization.

An exception is allowed if an update to a new major version is needed to correct vulnerabilities,
exploits, or other serious technical problems not corrected by the vendor in the major versions of
the tools specified below.

As an example, given here for Adobe Flash but applicable to all CUSS technologies:

• All CUSS 1.3 kiosk platform providers must include at least Adobe Flash 11.7.7. The
platform provider may choose to deploy a later point version of Adobe Flash 11

o For example, Adobe Flash 11.7.7+, 11.8, 11.9, and other point releases of Adobe

Flash 11 are permitted in a CUSS 1.3 environment and are compliant.

• The platform provider must not deploy any major release version of Adobe Flash greater
than 11:

o For example, Adobe Flash 12.0 is not permitted in a CUSS environment, and a
platform that deploys Adobe Flash 12 is not a CUSS compliant site.

• An application must not be written using Flash technology that depends on a version of

Flash greater than 11.7.7.

o The application provider must be aware that it may be running on a point release
newer than Adobe Flash 11.7.7.

o However, an application that requires a version Adobe Flash greater than 11.7.7
is not a CUSS compliant application

o An application provider cannot demand that a platform provider install a point
release of Adobe Flash 11 newer than 11.7.7

o An application provider cannot demand that a platform provider install a major
release of Adobe Flash newer than 11 (for example, Flash 12 or 12.1.)

 Technologies and Standards

Revision 1.3, June 2013 400

• As is the case for any business relationship, application and platform providers may
discuss one-to-one options for deploying newer point releases of Adobe Flash 11 at
specific sites, to accommodate application needs and also to assign ownership of the
operational risk this imposes on other applications at a site.

This strict requirement is absolutely required to ensure a common, consistent understanding of
what specific environment is available for CUSS applications.

Because of this, special care must be taken:

• Kiosk providers or suppliers must make sure their CUSS kiosk environment meets the
CUSS 1.3 versions requirements.

• Application providers and suppliers must make sure their development teams design for
and use only the versions listed, not more recent versions of the tool

The CUSS standard takes the view that having an environment and tool versions that are
consistent and predicatable for all application providers is the priority.

Allowing individual application providers to request newer versions of tools would require
imposing this change on all other application providers deployed at that site, which is not
acceptable as CUSS would no longer be a predictable or consistent environment.

 Technologies and Standards

Revision 1.3, June 2013 401

Kiosk PC System Requirements

Minimum Requirements:

The minimum PC requirements for a CUSS kiosk to support all the mandatory CUSS 1.3
Technologies listed above, are:

• Pentium 4 2.33 GHz or higher processor (or equivalent)
• 512MB of RAM (base platform, operating system, and a single CUSS application)
• Windows XP SP3 32-bit, or Windows 7 32-bit
• At least 1GB of available disk space per application
• Screen resolution of 1024x768 or above (1024 or more wide and 768 or more high)

These are the absolute minimum requirements that an existing kiosk enclosure must provide, in
order to comply with CUSS 1.3 and provide all the tools reqired for compliance.

The platform should also provide an extra 128MB of RAM for each additional CUSS application
running on the kiosk. For example, the total memory required for a kiosk running five CUSS
applications is 1024 MB of RAM.

Note that individual applications may use up to 192MB of memory combined for all their
processes. However, kiosks can be sized assuming the average application will not exceed
128MB.

Also, note that while these are the minimum system requirements for these required
technologies, they are not necessarily the recommended system configurations for those
technologies. In particular, high-definition video playback or sophisticated animations may
impose significantly higher hardware requirements, or even requirements for special graphics
processing hardware not required by CUSS.

Hence the bare minum is in place to give guidance as to which existing CUSS kiosks can be
upgraded to CUSS 1.3. Also note that, depending on the existing work load of existing CUSS
1.0-1.2 kiosks, older kiosk hardware that does not meet these bare minimum hardware
requirements may still be able to operate normally. For example, unless applications require
advanced AIR or Flash/Shockwave graphics, kiosks deployed to the CUSS 1.2 requirements will
continue to prove adequate for CUSS 1.3.

Recommended Requirements:

For new kiosks or kiosks being updated, CUSS-TS 1.3 recommends hardware that is above the
bare minimum system requirements:

CUSS 1.3 recommends the following PC specifications for new deployed kiosks (as specified in
the CUPPS Technical Specification revision 1.03):

 Technologies and Standards

Revision 1.3, June 2013 402

• System CPU with a Passmark score of at least 2000.
• 4GB of RAM total (base platform, operating system, and all applications)
• Windows XP SP3 32-bit, or Windows 7 32-bit

Application Design for CUSS 1.3:

Many older kiosks have been deployed for four or more years and and have not been upgraded.
Generally speaking, applications written to run on CUSS kiosks should not presume they will be
running on fast, recent PCs, even if the kiosks are running CUSS 1.3.

In addition, even newer kiosks may be running systems that are not as fast as typical current
desktop PC standards. This can be for a variety of reasons, many related to industrial design and
maintenance needs of PCs included inside kiosks.

As such, airline application providers should review the correct operation and performance of
their application on the range of PC equipment on which they expect the application to run, and
evaluate if any changes are needed. For example, applications should not necessarily rely on very
fast systems for any reason, such as for advanced visual effects or animations.

In addition, airline applications should not presume any screen resolution larger than 1024 pixels
wide and 768 pixels high. While most newer kiosks support larger resolutions, many existing
kiosks only support 1024x768, and applications would need to accommodate running in that
resolution.

 Technologies and Standards

Revision 1.3, June 2013 403

Presentation
Service
Technology

Standards
body or
Organization

1.1 Required
Version

1.2 Required
Version

1.3 Required
Version (Major version
required, later minor
version allowed)

Adobe Air Adobe - 1.5 3.7
AEA (Printers) AEA1 AEA99 AEA2008 AEA2009
AEA (Self Bag
Drop)

AEA - - AEA2012-2

Flash Movies Adobe Flash2 7.0 10.03 11.7.7

Standard CUSS
Java Browser
Plug-in

Oracle

Java
1.3.1_06
(default)
Java
1.5.0_04
(available)

Java 1.3.1_06
(default)
Java 1.3.1_20
(available)
Java 1.5.0_04
(available)

Java 7u21

Standard CUSS
Java Command
Line

Oracle

Java
1.3.1_06
(default)
Java
1.5.0_04
(available)

Java 1.3.1_06
(default)
Java 1.3.1_20
(available)
Java 1.5.0_04
(available)
JRE6u12
(available)

Java 7u21

JavaScript or
ECMA-262

Netscape/Mo
zilla, ECMA

- 1.5
JScript 5.8 (IE8)
1.8.5 (Chrome)

Macromedia
Audio

Adobe
Shockwave

10.1 11.0 12.0

Macromedia
Movies

Adobe
Shockwave

10.1 11.0 12.0

PDF Adobe - 1.7 (ISO
32000)

1.7 (ISO 32000)

Quicktime Apple 6.5 7.5.5 7.7.3
SilverLight Microsoft - 2.0 5.1
SVG (printing) W3C 1.1 - -
Standard CUSS
Web Browser

Microsoft - - IE8

Alternate Web
Browser4

Google - -
Chrome 27
Chrome Frame 21

1 If an AEA printer cannot be upgraded to the correct version of AEA, then any kiosk that uses that printer
cannot compliant with that version of CUSS.
2 Please review http://www.adobe.com/devnet/flashplayer/articles/fplayer10_security_changes.html for
compatibility information.
3 Applications that used Native Interface (DLL) portions of Flash 6 or Flash 7 are not supported in CUSS
1.2+ as they are not compliant with CUSS
4 The CUSS platform must provide both the standard and the alternate browser environments. CUSS
applications can choose which of the two to use.

 Technologies and Standards

Revision 1.3, June 2013 404

What other Software can an application use?

CUSS is a standard designed to run on multiple operating systems, and to remain interoperable
across a well-defined but fixed set of technologies. For this reason, CUSS applications running
on a CUSS kiosk must be java-based or browser-based and can only use the common tools listed
above, to ensure that they function on all platforms.

This approach is in place to ensure compatibility across platforms, providers, and kiosk sites, to
ensure the integrity of kiosk provider’s kiosk image and configuration, and to allow the kiosk
provider to fully control the kiosk image in accordance with the CUSS Technologies list.

As such, CUSS application providers cannot demand that special operating system tools,
libraries, or frameworks be installed on a kiosk to allow their application to be deployed.
Restricted are such items as native .EXE programs, .DLL libraries, OS frameworks such as
.NET, or any other non-application tool that would need to be installed into or copied to the
kiosk image.

Any additional components required by the application, must be approved by the CUSS
Technical Group and be listed in the CUSS Technologies List, possible in a new revision of the
CUSS standard. The platform providers must be able to install and independently test the
components to ensure they do not interfere with other parts of the platform. For example, in
CUSS 1.2, the Microsoft SilverLight technology was added to the list.

For example, these are activities that are not permitted:

• Installing DLLs or EXEs in the application directory (such as SWT, a toolkit which
requires JNI libraries); installing DLLs or EXEs in system or component directories not
owned by the application provider (shared/airport kiosks)

• Installing custom browser plug-ins
• Including and running a customer Java Runtime in the application directory
• Installing a specific native toolkit or API (such as .NET framework)

These activities are permitted:

• Installing a font resource (.TTF) so that it is available in java or the browser
• Requesting multi-language support "packages" be available on the kiosk, for extended

language support
• Include and use java libraries and toolkits as part of the application (provided or course

they do not require JNI components) such as xerces, log4j, etc.
• Installation of security certificates required for secure communication

 Technologies and Standards

Revision 1.3, June 2013 405

It is the responsibility of the application provider to properly abide by the licensing, terms and
conditions of any font, libraries, toolkits or other resources provided for or included with an
application when running on a kiosk.

Kiosk or Site-Specific Configuration for Applicatio ns

Because the CUSS standard is designed to allow airline applications to work consistently across
all kiosks and platform vendors, there should be minimal need for an airline to have kiosk,
station, or vendor-specific logic and configuration within application.

When and if site-specific setup or configuration or an application is required, the integration and
ongoing maintenance of the application is more difficult: it requires more documentation,
coordination, and tracking than other applications, and can make initial setup more difficult.
Overall, it can also affect the perception that CUSS is vendor-independent and interoperable.

For these reasons, the recommended practice for application suppliers and providers is to
minimize and, if possible, eliminate any site-specific settings or configurations required for their
application at the kiosk. (At the application server or host, of course, many site-specific rules and
settings are used.)

1. Applications should not use local configuration to set and find which devices to use on a
particular kiosk. This should be done in code, using the guidelines from Chapters 7, 4 and
5.

2. Keep local configuration to the bare minimum, if used at all. Such configuration should

only be used for known kiosk or device interoperability problems.

3. Business logic should not be set from local configuration. Instead, the application or
server logic should use the kiosk name and station code from the CUSS environment to
look up rules or configuration from a central configuration maintained by the airline.

4. Any local configuration that is needed due to a problem with vendor interoperability or

with the CUSS Technical Standard should be brought to the attention of the CUSS
Solution Working Group for discussion and revolution.

Application Technologies at the server

There are no restrictions whatsoever on any aspects of a CUSS application architecture that do
not run on the CUSS kiosk itself. Application providers are free to implement any approach they

 Self-Certification Criteria

Revision 1.3, June 2013 406

choose and any tools and technologies they need so long as the application components running
on the kiosk abide by the restrictions outlined here.

Technologies used by the platform

The goal of CUSS is to maintain interoperability for CUSS applications across different CUSS
vendors and kiosks. CUSS platforms do not themselves have to interoperate – other than of
course offering a complete and correct implemention the CUSS standard itself.

For this reason, CUSS platforms and kiosks can use any tools, operating systems, frameworks, or
architecture needed to implement the CUSS standard and run their platform services, tools, and
other offerings without restriction, so long as nothing in the platform environment conflicts with
the standard, interoperable environment required for CUSS applications (as listed above.)

Resource Limits per Application

To ensure that individual CUSS applications do not impact the resources on a shared common
use kiosk, here are the resource limits that CUSS 1.3 imposes on CUSS application. These limits
are increased from previous versions, taking into account the increased requirements of some
newer tools and technologies.

• The application must not use more than 1024MB in its local Storage directory on the
kiosk (increased from 100MB in CUSS 1.2).

• The application process and all child processes cannot use more than 192MB of RAM,

combined (increased from 128MB in CUSS 1.2)

• To allow the application to use up to 192MB in a java process, the platform must set the
java heap size limit for applications to 256MB, either in the command line parameter
configuration for launching the application, or in the global web browser java plug-in
settings for all applications.

• Applications are permitted to create additional processes, but must clean up those
processes when complete.

Applications must not excessively use the CPU (or “peg”) the CPU during transactions or when
idle. A platform provider can deem the CPU usage “excessive” if under its reasonable
evaluation, the CPU usage of the application affects the ability of other services, tools, or
applications on the kiosk to run properly and responsively.

 Self-Certification Criteria

Revision 1.3, June 2013 407

Appx F: Self-Certification Criteria

Refer to the separate document entitled Self-Certification Criteria, available among the CUSS
certification documents from the IATA CUSS Manual. The current version is 1.1 (February
2004.)

There are no changes to Self-Certification Criteria for CUSS Technical Specification 1.3. The
IATA Passenger Experience Management Group intends to publish additional testing,
compliance and self-certification guidelines for CUSS applications in the 18 months following
publication of CUSS-TS 1.3.

 Printer Stock and Document Types

Revision 1.3, June 2013 408

Appx G: Printer Stock and Document Types

To ensure the ability to reliably detect and use the document Feeders available on a CUSS kiosk,
this Appendix collects the clarifications and specifications relating to the physical appearance
and characteristics of paper documents available on the printer.

The CUSS standard defines three types of document: BoardingPass, Ticket, and GeneralPurpose,
as well as BaggageTag. The characteristics and meanings of the various documents media types
defined in CUSS are (from Addendum A.1.51):

1. Boarding Passes are blank paper, may or may not have magnetic stripe, may or may not
have a water mark.

2. Tickets are a controlled document that have stock control numbers (SCN) and are pre-
printed ticket stock as per IATA RP. It is unlikely that a CUSS kiosk operating in a
shared environment would contain ticket stock as the SCN is typically per airline and pre-
printed.

3. General Purpose Documents are blank paper.
4. Baggage Tags are documents that meet the CUSS bag tag specification
5. The paper may or may not be perforated.
6. The other types are optional. Stock use on a dedicated (non-shared) CUSS kiosks may be

customized as needed.
7. AEA and GPP printers must support all the requirements of IATA Resolution 792 for bar

coded boarding passes, including a minimum print resolution of 200dpi.

Of the three, only BoardingPass is mandatory and all other types are optional. As such, to be
portable, CUSS applications must be written assuming that at a minimum, a single Feeder with
BoardingPass stock is available that supports the AEA printer language and, likewise, a CUSS
platform must always offer at least one component that supports AEA printing on BoardingPass
stock.

CUSS 1.2 does not define the content appearance of the reverse (back) of the paper stock and
does not define any way within the standard for double-sided printing.

 Printer Stock and Document Types

Revision 1.3, June 2013 409

CUSS 21” standard bag tag schematics

This section is based on CUSS 1.0 Addendum A.1.13.

Here is a graphical representation of the standard CUSS 21” command baggage tag stock. There
are no guidelines regarding what text/forms appear on the back label of the stock, if any.

 Printer Stock and Document Types

Revision 1.3, June 2013 410

BoardingPass and Ticket ATB stock layout and perfor ation

This section is based on CUSS 1.0 Addendum A.1.1.

BoardingPass and Ticket documents must be in 8” ATB format with binding stub. The binding
stub is a non-printable area according to the AEA standards. The document may or may not be
an ATB2 magnetic card, and can be from a wide range of sources (fanfold cardstock, roll thermal
paper, etc.)

The CUSS recommended practice is to provide a 2” perforation for ATB stock, and a 3.5”
perforation for GPP paper. However, both devices might be implemented on the same physical
printer and paper source.

To allow airline applications to determine where the physical stub perforation actually is, the
modelNumber Characteristic of the Manufacturer component of the Feeder devices can contain
one of the following strings that define that paper’s perforation location. The default value is 2,
and the only valid values are 2 and 3.5.

• Perf=2 (for 2” ATB stubs)
• Perf=3.5 (for 3.5” GPP stubs)

 Printer Stock and Document Types

Revision 1.3, June 2013 411

Different types of BoardingPass and Ticket stock

This section is based on CUSS 1.0 Addendum A.1.3 and A.1.46.

The CUSS standard does not indicate more than one type of boarding pass stock. Some airports
may wish to offer separate stock for status customers, which could be used by applications to
print out appropriate boarding passes for their tiered customers.

To allow this extra specification, if required, the platform can include one or more of the
following keywords in the modelNumber Characteristic of the Manufacturer characteristics of
the Feeder component of a boarding pass printer. If none are specified, then the application must
assume that only normal or generic blank stock is provided.

• ECONOMY
• BUSINESS
• FIRST
• WALLET

This standard also makes the statement that there should be one virtual component per real
component per function per media type. This statement means that a single virtual media and
feeder component should be present for all physical bins containing identical stock. The CUSS
platform must manage the physical bins and their status in a fashion that allows this single virtual
component implementation.

This requirement simplifies the implementation for CUSS applications: an application only
needs to find and use single component that meets its printing needs, instead of anticipating and
managing multiple components offering the same thing.

This platform requirement does not apply any time the stock in multiple bins is not truly
identical, such as boarding pass stock with magnetic strip or without, with wallet or without, etc.
In this case, separate virtual components will exist and must have the correct characteristics set
to indicate the features of the stock.

For example, if a two-feeder ATB2 printer has identical stock on both bins, then there should
only be one CUSS Feeder component for that printer. If, on the other hand, one bin contains
normal boarding stock and the other contains First Class stock with ticket wallet, there should be
two CUSS Feeder components for that printer (the second one with the “FIRST WALLET”
indicator) since the stock are not identical.

Support for Numbered (controlled) documents

 Printer Stock and Document Types

Revision 1.3, June 2013 412

This section is based on CUSS 1.0 Addendum A.1.49.

Some kiosk devices may support controlled documents (uniquely numbered, etc), but the CUSS
standard does not directly allow this control information to be read by an application.

If and when the CUSS platform is able to detect and provide this information, it shall populate
the serialNumber Characteristic of the Feeder component that provides the controlled documents
with a document control number, with the following indication:

CTRL:<document_id>

The controlled document ID is the string following “CTRL:” up to the first space or the end of
the string. If the feeder does not have controlled documents, this tag is not included. If the feeder
has controlled documents but is empty, it must include the string “CTRL:-1”.

If the physical device is able to query the document number directly (OCR, scanning, etc) then
the actual value of the current document shall be stored in the characteristic. Otherwise, the
platform must ensure that the serial number of the current document to be printed is correct and
incremented automatically after successful printing (through manual reconciliation when
refilling stock, incrementing counters, etc.)

Transfer Type for legacy ATB2 printers

This section is based on CUSS 1.0 Addendum A.1.7.

The CUSS 1.0 standard omits the characteristic required to determine if a printer is direct
thermal or thermal transfer (the media transfer type is specified as an enumeration, but does not
have a corresponding attribute in the IDL.)

To overcome this erratum in the IDL, the CUSS platform shall include the string
“DirectThermal” or “ThermalTransfer” within the modelNumber Manufacturer Characteristic of
the ATB2 printer components. This allows applications that need to do ATB2 revalidation or
other ticket functions to detect the transfer type as required.

2-sided Document Printing

Kiosks may include printer hardware that supports printing on both sides of the page. This
capability can be made available to the application, or can be restricted to built-in platform
operations (such as printing advertising or other material on the back of each boarding pass.) For

 Printer Stock and Document Types

Revision 1.3, June 2013 413

more information on how this is done, please review Section 6.4.3: Reverse/2-sided printing on
GPPs.

Self Bag Drop (SBD) Heavy Tag Printing

The deployment of Self Bag Drop positions may include the requirement to print or encode
documents called “Heavy Tags”. These heavy tags may include a barcode, RFID tag, or other
information printed on a tag or adhesive document.

IATA Resolution 740 Attachment “O” discusses heavy tag printing but does not define a printing
standard for machine generated heavy tags. At the time of publication of the CUSS 1.3
specification, there is no other known standard for heavy tag documents elsewhere in the
industry (IATA, ICAO, ISO, or similar.)

For this reason, the CUSS Technical Specification cannot document or support any particular
document media or layout for heavy tag printing.

The CUSS Technical Specification only provides for a separate GPP printer definition that can
support arbitrary printing, which may be used for Heavy Tag printing, and cannot prescribe exact
document layout and formatting

Hence there is an additional burden on CUSS SBD application and platform providers to support
heavy tag printing that from site to site may have substantially different requirements. This
undermines a key goal of Common Use and it is unfortunately not something that this Technical
Specification can yet resolve.

It is recommended that implementations of SBD keep IATA PEMG informed of various local
requirements and solutions for Heavy Tag printing,

CUSS platforms at sites that need to provide Heavy Tag Printing should:

• Implement a CUSS GPP component for the heavy tag printer
• Indicate the DS_TYPES_HEAVYTAG capability in that printer’s Characteristics
• Set the proper document width and height values in the printer’s Characteristics
• Make available to airlines any layout and information requirements for heavy tags

CUSS applications that need to perform Heavy Tag Printing should:

• Look for a CUSS GPP component for heavy tag printing, by seeking a GPP component

indicating the DS_TYPES_HEAVYTAG Characteristic
• Review the width and height information for this GPP’s documents
• Review the layout and information requirements made available by the airport
• Perform application business logic to determine when and how to use the CUSS GPP

heavy tag printer as part of a bag drop transaction

 Printer Stock and Document Types

Revision 1.3, June 2013 414

• Consider whether reprinting tags using the bag tag printer on the kiosks to include
heavy/weight information is a viable alternative to printing dedicated heavy tags.

No samples of heavy tags are available at time of publication. As they are not yet covered by an
industry standard, application providers and platform providers should clearly communicate any
assumptions, expections, and regulatory requirements surrounding heavy tag or other specialty
document printing.

 Extended Data Type List (DS_TYPES)

Revision 1.3, June 2013 415

Appx H: Extended Data Type List (DS_TYPES)

Many of these values are also listed in codes.idl in the datastatus class.

Identifier (DS_TYPES) Description Data Format Setup Parameters
DS_TYPES_ISO DS_TYPES_ISO DS_TYPES_ISO DS_TYPES_ISO –––– 0000 Default encoding (passport/card track data) Refer to correct sections in this document. None

DS_TYPES_FOID_ISO DS_TYPES_FOID_ISO DS_TYPES_FOID_ISO DS_TYPES_FOID_ISO –––– 100100100100 ISO track data with FOID Data truncation Refer to Chapter 8 for more information
DS_TYPES_PAYMENT_ISO DS_TYPES_PAYMENT_ISO DS_TYPES_PAYMENT_ISO DS_TYPES_PAYMENT_ISO –––– 222200000000 ISO track data without truncation Refer to Chapter 8 for more information Comma-list of of IINs to accept
DS_TYPES_DISCRETIONARY_ISO DS_TYPES_DISCRETIONARY_ISO DS_TYPES_DISCRETIONARY_ISO DS_TYPES_DISCRETIONARY_ISO –––– 333300000000 ISO track data with DISCRETIONARY Data truncation Refer to Chapter 8 for more information Comma-list of of IINs to accept
DS_TYPES_FOID_JIS2 DS_TYPES_FOID_JIS2 DS_TYPES_FOID_JIS2 DS_TYPES_FOID_JIS2 –––– 14100141001410014100 JIS-2 track data with FOID Data truncation Refer to Chapter 8 for more information
DS_TYPES_PAYMENT_JIS2 DS_TYPES_PAYMENT_JIS2 DS_TYPES_PAYMENT_JIS2 DS_TYPES_PAYMENT_JIS2 –––– 14200142001420014200 JIS-2 track data without truncation Refer to Chapter 8 for more information Comma-list of of IINs to accept
DS_TYPES_DISCRETIONARY_JIS2 DS_TYPES_DISCRETIONARY_JIS2 DS_TYPES_DISCRETIONARY_JIS2 DS_TYPES_DISCRETIONARY_JIS2 ––––
14300143001430014300 JIS-2 track data with DISCRETIONARY Data truncation Refer to Chapter 8 for more information Comma-list of of IINs to accept

DS_TYPES_VING DS_TYPES_VING DS_TYPES_VING DS_TYPES_VING –––– 1000100010001000 VING magnetic card encoded keylock data format See VING vendor specification document None
DS_TYPES_TESSA DS_TYPES_TESSA DS_TYPES_TESSA DS_TYPES_TESSA –––– 2000200020002000 TESSA magnetic card encoded keylock data format See TESSA vendor specification document None
DS_TYPES_SAFLOK DS_TYPES_SAFLOK DS_TYPES_SAFLOK DS_TYPES_SAFLOK –––– 3000300030003000 SAFLOK magnetic card encoded keylock data format See SAFLOK vendor specification document None
DS_TYPES_TIMELOX DS_TYPES_TIMELOX DS_TYPES_TIMELOX DS_TYPES_TIMELOX ---- 4040404000000000 TIMELOX magnetic card encoded keylock data format See TIMELOX vendor specification document None
DS_TYPES_KABA_ILCO DS_TYPES_KABA_ILCO DS_TYPES_KABA_ILCO DS_TYPES_KABA_ILCO –––– 5000500050005000 KABA iLco magnetic card encoded keylock data format See KABA vendor specification document None
DS_TYPES_KABA_ILCO_FOLIO DS_TYPES_KABA_ILCO_FOLIO DS_TYPES_KABA_ILCO_FOLIO DS_TYPES_KABA_ILCO_FOLIO ---- 6000600060006000 KABA FOLIO magnetic card encoded keylock data format See KABA vendor specification document None

DS_TYPES_IMAGE_IR DS_TYPES_IMAGE_IR DS_TYPES_IMAGE_IR DS_TYPES_IMAGE_IR ---- 7000700070007000 Infrared biometric or document image Industry standard JPG or BMP “JPG” (default) or “BMP”
DS_TYPES_IMAGE_VIS DS_TYPES_IMAGE_VIS DS_TYPES_IMAGE_VIS DS_TYPES_IMAGE_VIS ---- 8000800080008000 Visible biometric or document image Industry standard JPG or BMP “JPG” (default) or “BMP”
DS_TYPES_IMAGE_UV DS_TYPES_IMAGE_UV DS_TYPES_IMAGE_UV DS_TYPES_IMAGE_UV ---- 9000900090009000 Ultraviolet biometric or document image Industry standard JPG or BMP “JPG” (default) or “BMP”
DS_TYPES_IMAGE_PHOTO DS_TYPES_IMAGE_PHOTO DS_TYPES_IMAGE_PHOTO DS_TYPES_IMAGE_PHOTO –––– 10000100001000010000 Photographic biometric or document image Industry standard JPG or BMP “JPG” (default) or “BMP”
DS_TYPES_IMAGE_COAX DS_TYPES_IMAGE_COAX DS_TYPES_IMAGE_COAX DS_TYPES_IMAGE_COAX ---- 11000110001100011000 Coaxial biometric or document image Industry standard JPG or BMP “JPG” (default) or “BMP”

DS_TYPES_CODELINE DS_TYPES_CODELINE DS_TYPES_CODELINE DS_TYPES_CODELINE –––– 12000120001200012000 OCR data detected within document and decoded ASCII text None
DS_TYPES_BARCODE DS_TYPES_BARCODE DS_TYPES_BARCODE DS_TYPES_BARCODE –––– 13000130001300013000 Barcode data detected within document and decoded ASCII text or binary stream None
DS_TYPES_MIWA DS_TYPES_MIWA DS_TYPES_MIWA DS_TYPES_MIWA ---- 1400014000140001400050505050 MIWA magnetic card ended keylock data format See MIWA specification document None
DS_TYPES_JIS2 DS_TYPES_JIS2 DS_TYPES_JIS2 DS_TYPES_JIS2 –––– 14000140001400014000 Japanese Industrial Standard card encoding type JIS2 ASCII text, single track None

DS_TYPES_SCAN_PDF417 DS_TYPES_SCAN_PDF417 DS_TYPES_SCAN_PDF417 DS_TYPES_SCAN_PDF417 –––– 15000150001500015000 Scanner/CCD support for PDF417 encoded data Binary data, multiple track None
DS_TYPES_SCAN_AZTEC DS_TYPES_SCAN_AZTEC DS_TYPES_SCAN_AZTEC DS_TYPES_SCAN_AZTEC –––– 15100151001510015100 Scanner/CCD support for Aztec encoded data Binary data, multiple track None

50 This conflicts with DS_TYPES_JIS2 for backwards compatibility reasons.

 Extended Data Type List (DS_TYPES)

Revision 1.3, June 2013 416

DS_TYPES_SCAN_DMATRIX DS_TYPES_SCAN_DMATRIX DS_TYPES_SCAN_DMATRIX DS_TYPES_SCAN_DMATRIX –––– 15200152001520015200 Scanner/CCD support for DataMatric encoded data Binary data, multiple track None
DS_TYPES_SCAN_QR DS_TYPES_SCAN_QR DS_TYPES_SCAN_QR DS_TYPES_SCAN_QR –––– 15300153001530015300 Scanner/CCD support for QR encoded data Binary data, multiple track None
DS_TYPES_SCAN_CODE39 DS_TYPES_SCAN_CODE39 DS_TYPES_SCAN_CODE39 DS_TYPES_SCAN_CODE39 –––– 15400154001540015400 Scanner/CCD support for Code 3 of 9 1D barcodes Text data, multiple track None
DS_TYPES_SCAN_CODE128 DS_TYPES_SCAN_CODE128 DS_TYPES_SCAN_CODE128 DS_TYPES_SCAN_CODE128 –––– 15500155001550015500 Scanner/CCD support for Code 128 1D barcodes Text data, multiple track None
DS_TYPES_SCAN_CODE2OF5 DS_TYPES_SCAN_CODE2OF5 DS_TYPES_SCAN_CODE2OF5 DS_TYPES_SCAN_CODE2OF5 –––– 15600156001560015600 Scanner/CCD support for Interleaved 2 of 5 1D barcodes Text data, multiple track None

DS_TYPES_ISO7816 DS_TYPES_ISO7816 DS_TYPES_ISO7816 DS_TYPES_ISO7816 –––– 16000160001600016000 Communication protocol for PICC/NFC/RFID device See Section 7.15 See Section 7.15

DS_TYPES_PRINT_2S_PAGE DS_TYPES_PRINT_2S_PAGE DS_TYPES_PRINT_2S_PAGE DS_TYPES_PRINT_2S_PAGE –––– 16100161001610016100 GPP support for back-side printing a single page See Section 6.4.3 See Section 6.4.3
DS_TYPES_PRINT_2S_MULTI DS_TYPES_PRINT_2S_MULTI DS_TYPES_PRINT_2S_MULTI DS_TYPES_PRINT_2S_MULTI –––– 16200162001620016200 GPP support for for front-back printing of multi-page documents See Section 6.4.3 See Section 6.4.3
DS_TYPES_PRINT_PDF DS_TYPES_PRINT_PDF DS_TYPES_PRINT_PDF DS_TYPES_PRINT_PDF –––– 16300163001630016300 PDF version 7.0 / ISO32000 compatible print data See PDF specification and Section 6.4.2 See Section 6.4.2

DS_TYPES_MIFARE DS_TYPES_MIFARE DS_TYPES_MIFARE DS_TYPES_MIFARE –––– 17000170001700017000 Communication protocol for PICC/NFC/RFID device See Section 7.15 See Section 7.15
DS_TYPES_SUICA DS_TYPES_SUICA DS_TYPES_SUICA DS_TYPES_SUICA –––– 17010170101701017010 Communication protocol for PICC/NFC/RFID device See Section 7.15 See Section 7.15

DS_TYPES_ISO15961 DS_TYPES_ISO15961 DS_TYPES_ISO15961 DS_TYPES_ISO15961 ---- 18000180001800018000 IATA RFID baggage tag device Refer to CUSS.SBD.XSD
DS_TYPES_RP1745 DS_TYPES_RP1745 DS_TYPES_RP1745 DS_TYPES_RP1745 ---- 18010180101801018010 IATA Baggage Service message format Refer to CUSS.SBD.XSD
DS_TYPES_WEIGHT DS_TYPES_WEIGHT DS_TYPES_WEIGHT DS_TYPES_WEIGHT –––– 18020180201802018020 Baggage weight/load from Scale or SBD device Refer to CUSS.SBD.XSD
DS_TYPES_HEAVYTAG DS_TYPES_HEAVYTAG DS_TYPES_HEAVYTAG DS_TYPES_HEAVYTAG –––– 18030180301803018030 Indicates a printer designated as a baggage heavy tag printer None
DS_TYPES_SBDAEA DS_TYPES_SBDAEA DS_TYPES_SBDAEA DS_TYPES_SBDAEA –––– 18040180401804018040 AEA-SBD control language Refer to AEA2012-2
DS_TYPES_SBDCUSS DS_TYPES_SBDCUSS DS_TYPES_SBDCUSS DS_TYPES_SBDCUSS –––– 18050180501805018050 CUSS-SBD control language

DS_TYPES_EPASSPORT_DG1 DS_TYPES_EPASSPORT_DG1 DS_TYPES_EPASSPORT_DG1 DS_TYPES_EPASSPORT_DG1 –––– 20100201002010020100 ICAO e-Passport RFID data DG1 Binary data – see ICAO specification None
DS_TYPES_EPASSPORT_DG2 DS_TYPES_EPASSPORT_DG2 DS_TYPES_EPASSPORT_DG2 DS_TYPES_EPASSPORT_DG2 –––– 20200202002020020200 ICAO e-Passport RFID data DG2 […] Binary data – see ICAO specification None
............DG3DG3DG3DG3----DG20 DG20 DG20 DG20 –––– 20300203002030020300----2200220022002200 ICAO e-Passport RFID data DG20 Binary data – see ICAO specification None

DS_TYPES_EPAYMENT DS_TYPES_EPAYMENT DS_TYPES_EPAYMENT DS_TYPES_EPAYMENT –––– 2300230023002300 Generic Payment and EMV Transaction CUSS 1.3 format Refer to CUSS.PAYMENT.XSD

 Application Updates and Distribution

Revision 1.3, June 2013 417

Appx I: Application Updates and Distribution

One of the main issues surrounding the deployments of kiosks and applications using the CUSS
1.0 and 1.1 standards is that the requirements to packaging and distributing applications is not
consistent, and different groups have a different understanding as to what types of changes
require re-testing, and to what extent.

While IATA has not yet defined or recommended any application or platform change
management procedure for vendors and providers to follow, CUSS 1.2 now includes some
overall guidelines that will make the existing situation smoother.

Packaging and Distribution of CUSS Applications
This section is taken from CUSS 1.0 Addendum A.1.22.

This section provides information on how a CUSS application provider should bundle and
deliver an application to a kiosk provider (for a new application or an application update.) It
provides a simple, common packaging method that is not tied to any application provider or
platform/kiosk vendor tools. An application provider can then create and send a common,
consistent update to all kiosk sites.

Kiosk providers or sites are free to repackage any application updates they receive in any fashion
suitable to their internal tools, processes, and operating environment. The application provider
should not be involved in this process, however, as it is (usually) proprietary to the kiosk vendor.
More specifically:

An airline is not required to create, provide, or update any application update information that is
specific and proprietary to the airport kiosk being updated. It only needs to provide the basic
information listed below. The kiosk provider must integrate these airline files into whatever file,
configuration, and update management/distribution methods their kiosks or platform provider
use, without input from the airlines.

The goal is to ensure that an airline can easily deliver a standard update to numerous airports at
the same time, and it is up to the airport, not the airline, to process that update and integrate it
with their kiosks using whatever proprietary processes they have chosen to use.

An airline will only provide the following items when delivering a CUSS application. No where
should there be any reference to specific kiosk or vendor files or directory locations.

1. ZIP archive (including subdirectories, if needed) of the entire application and all its
support files which must be installed on the kiosk in order for the application to run. This
archive includes only files (software, resources, configuration) for the airline application,

 Application Updates and Distribution

Revision 1.3, June 2013 418

and cannot contain any platform files, platform directories, platform tools, or platform
configuration files.

2. If the application is browser-based: The startup URL must be provided (either over the

network, or a local HTML installed by the application archive.) If any specific values are
needed in the URL, the startup URL must include these parameters. For example, this
could include the Storage Component location, the Kiosk Name, etc.

3. If the application is java-based: The full startup command line for the application must

be provided. This must include any java runtime parameters, classpath statements, and
class parameters.

4. Files or additional instructions for installation (such as new system font files, or language

packs) only as permitted in Appendix A (Application Technologies.)

5. The version number of the application and whether it required a CUSS 1.0, CUSS 1.1, or
CUSS 1.2 environment.

6. The company code and application name used by the airline application when

communicating with the platform using the akID structure.

7. Application change/revision history with sufficient information for the airport to
determine if any additional integration testing is needed (if the airport SLA requires this
information.)

8. Recommended for ease of troubleshooting: A README or similar document that

explains how to see if the application is running properly (log locations, etc) to provide
assistance during deployment.

An airline is not required to provide proprietary update scripts, install processes or incremental
patch files, or detailed description of all files/directories (though this may be required for initial
integration.)

 Application Updates and Distribution

Revision 1.3, June 2013 419

CUSS Certification and Re-Certification Guidelines
This section is taken from the March 2007 CUSSMG (now PEMG) presentation CUSS
Certification and Re-Certification Guidelines v2.

Many airlines have integrated and certified their IATA CUSS application with various CUSS
providers. These applications are now deployed across many CUSS sites. Similarly, many CUSS
platform providers have integrated and certified their IATA CUSS platforms with various CUSS
application providers. These platforms are now deployed across many CUSS sites.

What are the guidelines regarding re-certification with IATA or re-integration with the providers
as the airline continues to evolve their CUSS application with new functionality and
enhancements? Similarly, what are the guidelines regarding re-certification with IATA or re-
integration with the airline application providers as the platform provider continues to evolve
their CUSS platform with new functionality and enhancements?

Below is a table of changes and change definitions to assist airlines and airports and others
interested in the CUSS process in determining when CUSS integration or full certification is
required after implementing changes. Airlines, airports and providers can use these guidelines in
planning application updates and distribution planning.

CUSS 1.3 defines an Automatic Remote Update (ARU) procedure. Only certain types of changes
are elegible for automated updates. Please review the ARU Chapter 9 as well as these change
definitions to be clear when and how changes to your application can be deployed.

Application Change Definitions

Change
Level Description

1

A level 1 change dictates that CUSS certification or re-certification of the application is
required. The CUSS certification document defines the types of changes where
certification/re-certification is required.
Changes of this type ARE NOT eligible for Automated Remote Updates.

2

A level 2 change dictates that integration or platform end-to-end testing is required with the
airline application provider in the lab. A change is defined as level 2 if there is a significant
change in how the application interfaces with the platform.
Changes of this type ARE NOT eligible for Automated Remote Updates.

3

A level 3 change indicates a complex deployment where site coordination and configuration
management is required. A remote test of the application is required. The changes in the
application impact how the application interfaces with the platform, such as a change in the
sequence of calls to the platform.
Changes of this type ARE eligible for Automated Remote Updates provided they are
first distributed to a limited “beta site” selection of kiosks in a production environment.

4

A level 4 change is a low risk/minor change. The changes in the application do not affect
interaction with the CUSS platform.
Changes of this type ARE eligible for Automated Remote Updates. ARU Validation
must be performed at all sites.

 Application Updates and Distribution

Revision 1.3, June 2013 420

Application Change Examples (with corresponding lev el)

This list is not a comprehensive list and is not intended to circumvent proper change
management, testing practices etc.

Description of Change Level
Add support for a new media or data device to the application (e.g. new peripheral) such as
adding ATB/2 reading, passport reading or bag tag printing

1

Change in Technical Specification version required by the application 1

The first implementation of a new application 1

1st time deployment of the application on a different vendor platform 2

The application provider changes the toolkit vendor used to interface with the platform 2

Change in the application architecture. Examples: A change from synchronous to asynchronous
calls or from a local hosted ORB to a remote ORB.

2

Configuration changes that require site validation and operator intervention 2

Application business flow changes that reuse preexisting platform interface 3

Add/remove files and directories in the airline specific application file/directory root (shared
libraries see above)

3

Changing the technologies that you use in your application – such as adding flash animation or
changing the ORB

3

Change in screen resolution for the application – requires some coordination with platform to
confirm support, resolution change, etc.

3

Configuration changes that do not require site validation 3

Change in startup parameters or startup URL 3

Change in network routing, port usage, firewall, host connection, host architecture, etc. 3

Change common launch configuration - new button, new brand, different airline code or
company code, etc.

3

Change in pectabs, logos, templates or other printer resources as well as cosmetic changes to
existing screens, images, sounds, languages residing in the local airline applications

4

Change business logic in the application server 4

Change host logic 4

Configuration changes –server based 4

 Application Updates and Distribution

Revision 1.3, June 2013 421

Platform Change Definitions
Note that any ARU guidelines apply only to updates to CUSS applications. Changes to the
platform are not subject to ARU restrictions or definitions.

Change
Level Description

1
A level 1 change dictates that CUSS certification or re-certification of the platform is
required. The CUSS certification document defines the types of changes where
certification/re-certification is required. Communication with the airlines is required.

2
A level 2 change dictates that integration or platform end-to-end testing is required with the
affected airline applications in the lab. Communication with the airlines is required.

3
A level 3 change indicates a complex deployment where site coordination and configuration
management is required. A remote test of the application may be required. Communication
with the airlines is required.

4
A level 4 change is a low risk/minor change. The change does not affect interaction with the
CUSS applications. Communication with the airlines is recommended.

 Application Updates and Distribution

Revision 1.3, June 2013 422

Platform Change Examples (with corresponding level)

This list is not a comprehensive list and is not intended to circumvent proper change
management, testing practices etc.

Description of Change Level

New platform 1

Adding new device types to the platform (not already certified) 1

Major change in CUSS version supported (i.e. 1.0 to 2.0) 1

Activating new device types in the platform at the airport 2

Implementing IATA CUSS minor releases (ie 1.2 to 1.3); specifically ones that alter device or
platform behaviour

2

Changes to the networking architecture in the airport 2

Changing the default screen resolution 2

Changing the operating system (i.e. XP to Windows 7) 2

Changing browser technologies 2

Tangible increase in platform instability or reduced reliability in applications (when no changes
occurred in the application)

2

Changes to the ORB the platform uses 2

Minor change in CUSS version supported (i.e. 1.0 to 1.1) that do not alter device behaviour 3

Adding new device vendor – i.e. switching boarding pass printer supplier from supplier A to
supplier B

3

Installing Microsoft patches or other operating system updates 3

Changes to the common launch application such as changing the branding or adding a 2nd page
to the CLA screens

3

Change in application paths or how they are configured 3

Changing the list of supported screen resolutions 3

Adding or modifying kiosk IDs in the network; changing location codes 3

Changing paper stock such as from magnetic to non-magnetic or from thermal to non-thermal 3

Adding new kiosks in the airport 4

Adding new CUSS applications to the airport installation 4

Upgrading existing CUSS applications to the airport installation 4

Additional functionality in the platform that doesn’t impact CUSS interfaces 4

 CUSS 1.0 Addendum Reference

Revision 1.3, June 2013 423

Appx J: Upgrading to a new version of CUSS

The CUSS Technical Standard update from version 1.0/1.1/1.2 to 1.3 is designed to allow all
existing CUSS applications, with minimal if any changes, to continue to work on CUSS 1.3
environments, while making available to new applications new features and technologies.

Platforms running CUSS 1.3 must be updated to include the new features introduced in the new
version of the standard, as well as offer an updated kiosk environment that provides the new
technologies available to applications in CUSS 1.3.

This Appendix provides a “quick reference” regarding the tasks facing platform and application
developers who intend to upgrade to the latest version of CUSS. It does not replace the rest of
this specification document: application and platform suppliers should review and understand all
changes in this updated specification and determine what effect the changes have on their own
platform or application software.

 CUSS 1.0 Addendum Reference

Revision 1.3, June 2013 424

Updating Applications for CUSS 1.3

Some applications may need to change in order to fix fundamental compatibility problems
identified and solved within the CUSS 1.0 standard between 2003 and 2011. These fixes have
been documented in regular updates to the CUSS 1.0 Addendum (see below) and the goal is to
unify these corrects in a single, consistent implementation across all kiosk platforms running the
CUSS 1.2 specification. CUSS 1.3 adds additional changes and features on top of CUSS 1.2

Any changes to application behaviour are due to the nature of the issue being fixed. Where the
CUSS standard was unclear about how an aspect of the specification functioned, in some cases
different platforms and applications implemented the specification in incompatible ways.
Because of this, once the problem had been resolved by choosing one or the other of those
incompatible interpretations, the remaining platforms and applications need to change in order to
operate properly.

Many applications will not need to change at all, if they are not affected by these previous
Addendum resolutions which were part of CUSS 1.2. Existing applications can also continue to
use the CUSS 1.0/1.1/1.2 technologies, as they remain available on CUSS 1.3 kiosks.

It is anticipated that most applications will not need to undergo Integration testing in order to be
deployed on a CUSS 1.3-compliant kiosk environment, since any changes needed are very
specific and the expected behaviour of applications and platforms is well-defined for these
issues. However, the application providers may still wish to coordinate a short Integration
session with various kiosk providers to verify the new behaviour.

If a CUSS application requires changes for CUSS 1.3, but will continue to run on CUSS 1.2 or
earlier kiosks as well (for example, their own proprietary kiosks, for example) then the
application may need some extra logic to handle the behaviour of both versions of the standard
on which it will run.

For example, the sequence of events from card readers may be different on older CUSS 1.0
kiosks, and CUSS 1.2 or CUSS 1.3 kiosks, as clarified in Section 3.8 of this document. An
application might need to retain its existing card reader event logic (for older platforms) but also
accept the newer CUSS version.

 CUSS 1.0 Addendum Reference

Revision 1.3, June 2013 425

Here is the list of changes and review required for an application to run on a CUSS 1.3 kiosk:

Review Items (CUSS 1.2 to CUSS 1.3)

1. Changes in AEA2009 related to 2D barcode encoding may require pectab or data
changes. In addition, any pectabs that use barcode “4” or “V” for 1D barcodes need to be
changed to “7” and “W” with the equivalent data streams.

2. Make sure the application does not check for and require specific platform or
specification versions in the CUSS Environment, which would be different on a CUSS
1.3 kiosk.

3. If the CUSS application reads magnetic cards for any purpose, update the application to

comply with the CUSS FOID Addendum, included in CUSS-TS 1.3 as Chapter 8.

4. Verify that your application runs in JRE7 as the sole java runtime environment. This
applies to browser-based applications running the java plug-in, or traditional full java
applications running from the command line.

5. If your application is browser-based, verify that it runs correctly in the Standard CUSS
Browser (Microsoft Internet Explorer 8).

Review Items (CUSS 1.0/1/1 to CUSS 1.2)

1. Because AEA printers run AEA2008, any pectabs that use barcode “4” or “V” need to be
changed to “7” and “W” with the equivalent data streams.

2. Review how the application uses the receive() directive and make sure it complies with

Section 3.6.8.1.

3. Review how the application uses the offer() directive and monitors Dispenser standard,
and make sure it complies with Sections 3.6.9.1 and 3.6.11.

4. Read Section 3.8 and determine if any changes are needed in how an application

monitors and uses Media input devices such as card readers and passport scanners.

5. Make sure the application does not check for an require specific platform or specification
versions in the CUSS Environment, which would be different on a CUSS 1.2 kiosk.

6. Read Section 1.7 on Data Security and check if the application requires any changes to

meet the guidelines.

 CUSS 1.0 Addendum Reference

Revision 1.3, June 2013 426

7. If your application uses Adobe Flash, it will be running under Adobe Flash Player 10.0.
This version includes security changes that may impact existing Flash content written for
Flash 6 or 7. For more information, please review:

http://www.adobe.com/devnet/flashplayer/articles/fplayer10_security_changes.html

New Features (CUSS 1.2 to CUSS 1.3):

1. If the application performs any sort of automated remote update feature, change it to
attempt the new CUSS 1.3 ARU requirements.

2. If your application using the IntegratedConveyor interfaces from CUSS 1.1, it will need

to change to use the updated conveyor interfaces defined in sections 7.16 and 7.17.
Platform providers may, however, leave the existing IntegratedConveyor interface in
place to ease the transition.

3. Applications that require multi-byte AEA printing may use the new EP and ES AEA
commands to request extended language/codepage support from the platform. However,
this support depends on the printer capabilities on the kiosk and extended languages may
not be supported.

4. If your application uses a proprietary Payment Device and interface, it may need to be
updated to support the new standard payment interface defined in section 7.19.

New Features (CUSS 1.0/1.1 to CUSS 1.2):

1. Review new Sections 2.4.4 and 2.4.5. There are many new application mode and
notification features available to applications. Of immediate interest are Sections 2.4.5.6
and 2.4.5.7, which an application can use to provide more detailed information about
what is going on. This can assist in front-line monitoring of CUSS applications.

2. Review the new technology lists and understand what is available for future versions or

changes to the application (long-term upgrade planning.)

3. Explore how to use the new 2D barcodes in AEA2008 as part of the airline’s barcoded
boarding pass strategy (BCBP.)

 CUSS 1.0 Addendum Reference

Revision 1.3, June 2013 427

Updating Platforms for CUSS 1.3

CUSS platforms must be updated to include all fixes and resolutions within the Technical
Specification, and they must also implement some new features (such as Automated Remote
Update events) that are now part of the standard. Updated platforms must then be rolled out into
a kiosk environment that makes available to the applications the new CUSS 1.3 Technologies
listed in Appendix E, such as the standard CUSS java and standard CUSS browser environments.

While it is expected that most existing applications will continue to operate without problem
under CUSS 1.3, this is not guaranteed (see above.) Platform and kiosk providers should also
plan and coordinate an upgrade of their existing sites to CUSS 1.3, communicating the
information and timeline with their airport locations and application providers.

Required Changes:

1. Update all AEA printers to AEA2009 including support for QR, DataMatrix and Aztec
2D barcodes, EAN-13 1D barcodes, and support the ZS and AV printer commands. New
commands that must also be supported are the RC and RI commands, as well as EP and
ES to support requests for extended language/codepage printing.

2. All kiosk printers must support 200dpi or better printing, to comply with the requirements

if IATA Resolution 792 (Bar Coded Boarding Pass.) If the printers in the kiosk to not
meet this requirement the kiosk is not CUSS 1.3-compliant.

3. A CUSS 1.2 or 1.3-compliant kiosk and platform must include a barcode scanner capable

of reading IATA Resolution 792 barcodes in the following symbologies: PDF417,
QRCode, Aztec, Datamatrix. (Previous versions of the CUSS-TS did not require any
barcode scanner – a hardware upgrade may be needed for legacy kiosks.)

4. Update the kiosk environment/image to support all the new technologies for CUSS 1.3

(such as JRE7, Adobe AIR 3.7, and similar described in Appendix E.)

5. If a kiosk printer cannot be updated to AEA2009, or the kiosk image does not include all
new technologies and tools mandated by CUSS 1.3, then the kiosk is not CUSS 1.3-
compliant.

6. Review Section 2.4.5 and add platform support the Automated Remote Update requests

7. Implement the CUSS FOID Addendum (Chapter 8) for all card reader interfaces.

8. Make sure the new platform version and specification versions are published to the

application as described in Section 3.3.1.1.

 CUSS 1.0 Addendum Reference

Revision 1.3, June 2013 428

9. Update all ACTIVE Notification logic to include the new “NOTIFICATION=” prefix for
notification data.

Optional Changes:

1. If a platform is running on a kiosk with a baggage scale/conveyor, make sure it is
implemented via the new Baggage System component definition listed in Section 7.16.
The platform must implement both the AEA-SBD interface, as well as the CUSS
Component Mode interface.

2. If the platform is running on a kiosk with an intergrated payment device (Chip & PIN,
etc), make sure it is implemented view the new Payment Interface component definition
listed in Section 7.19.

3. Platforms that want to add additional control and oversite of application ARU requests

may choose to implement some or all of the platform features related to ARU, such as
snapshot and rollback. How this is done and to what extent is a platform implementation
exercise.

4. If the kiosk includes barcode scanners that support multiple reads on a single document,
change the barcode interface to return additional data tracks representing multiple
simultaneous reads.

Updating Platforms for CUSS 1.2

CUSS Version 1.3 is the current version, and new/updated kiosks should be updated to the latest
version, and not to CUSS 1.2. However, for reference, the incremental change between CUSS
1.0/1.1 and CUSS 1.2 is provided here.

CUSS platforms must be updated to include all fixes and resolutions within the Technical
Specification, and they must also implement some new features (such as Application Transfer
mode) that are now part of the standard. Updated platforms must then be rolled out into a kiosk
environment that makes available to the applications the new CUSS 1.2 Technologies listed in
Appendix E.

While it is expected that most existing applications will continue to operate without problem
under CUSS 1.2, this is not guaranteed (see above.) Platform and kiosk providers should also
plan and coordinate an upgrade of their existing sites to CUSS 1.2, communicating the
information and timeline with their airport locations and application providers.

Required Changes:

1. Update all AEA printers to AEA2008 including support for QR, DataMatrix and Aztec
2D barcodes, EAN-13 1D barcodes, and support the ZS and AV printer commands.

 CUSS 1.0 Addendum Reference

Revision 1.3, June 2013 429

2. All kiosk printers must support 200dpi or better printing, to comply with the requirements

if IATA Resolution 792 (Bar Coded Boarding Pass.) If the printers in the kiosk to not
meet this requirement the kiosk is not CUSS 1.2-compliant.

3. A CUSS 1.2-compliant kiosk and platform must include a barcode scanner capable of

reading IATA Resolution 792 barcodes in the following symbologies: PDF417, QRCode,
Aztec, Datamatrix. (Previous versions of the CUSS-TS did not require any barcode
scanner – a hardware upgrade may be needed for legacy kiosks.)

4. Update the kiosk environment/image to support all the new technologies for CUSS 1.2

(such as Adobe Air.)

5. If a kiosk printer cannot be updated to AEA2008, or the kiosk image does not include all
new technologies and tools mandated by CUSS 1.2, then the kiosk is not CUSS 1.2-
complient.

6. Add PDF printing support to all kiosks that have General Purpose Printers (GPPs.)

7. Review Section 2.4.4 and add platform support for the new modes of operation.

8. Review Section 2.4.5 and add platform support for special state transitions and

notification strings.

9. Implement the recommended guidelines in Section 1.7 (Data Security) to help protect
card data on the kiosk.

10. Update the receive() directive to purge data after the first read, and return multi-track data

in the correct format (see Section 3.6.8.1.)

11. For kiosks with real printer dispensers, review Sections 3.6.9.1, 5.11 and 5.6 to make sure
Dispensers and Feeders are implemented correctly (MEDIA_FULL, etc.)

12. Review Section 3.8 and verify that all MediaInput devices behave in accordance with the

new event sequence guidelines.

13. Make sure the new platform version and specification versions are published to the
application as described in Section 3.3.1.1.

Optional Changes:

5. Update the kiosk monitoring systems to support and indicate the new application status
information described in Sections 2.4.5.6 and 2.4.5.7. This will assist in supporting and
monitoring application status on the kiosks.

 CUSS 1.0 Addendum Reference

Revision 1.3, June 2013 430

6. If a platform is running on a kiosk with a baggage scale/conveyor, make sure it is
implemented via the new Conveyor component definition.

7. If a platform is running on a kiosk with extended data type devices, such as flatbed

scanners and RFID readers, make sure they are implemented as described in Chapter 6.

CUSS 1.0/1.1 Addendum Reference Table

The CUSS 1.2 version of the specification includes many updates taken from the CUSS 1.0
Addendum document. For those already familiar with the previous version of the specification
and that Addendum document, here is a table that references addendum entries with their Section
in this CUSS Specification.

To be CUSS 1.2-compliant or later, a CUSS platform must implement all features referenced in
the table below and updated within this CUSS 1.2 specification.

Ref Addendum Title CUSS 1.2
A.1.1 Perforation location on printers (GPP, ATB) Appendix G
A.1.2 Supported version of AEA specification Appendix D, 3.6.6
A.1.3 Multiple boarding pass stock support Appendix G
A.1.4 Multiple-airline branding on launch screen 2.4.4
A.1.5 Single-application mode device support 2.4.5
A.1.6 Data input device identification Chapter 6
A.1.7 Transfer type for ATB2 printers Appendix G
A.1.8 Clarification of AEA logo support Appendix D
A.1.9 Clarification of AEA2002 PDF417 support Appendix D
A.1.10 Dedicated single application mode (SAM) 2.4.4, 2.4.5
A.1.11 Offer() behavior for dispenser components (AMENDED) 3.6.4, 3.6.9.1, 5.6
A.1.12 enable()/disable() behavior for media input devices 3.6.2, 3.6.3
A.1.13 CUSS bag tag stock specification schematics Appendix G
A.1.14 Application timeout and initial screen behavior 2.4.4, 2.4.5
A.1.15 CUSS CORBA interfaces should listen on all network addresses 2.1.1
A.1.16 Language indicator when activating an application 2.4.4, 2.4.5
A.1.17 Audio virtual component support Appendix B
A.1.18 Track data format of OCR passport data (AMENDED) 3.1.9, 3.6.8.1
A.1.19 Extended security features of passport/document readers Chapter 6, codes.idl
A.1.20 Further clarification of AEA logo support, PCX header Appendix D
A.1.21 AEA barcode Vertical printing position Appendix D
A.1.22 Packaging and distribution of CUSS application updates Appendix I
A.1.23 Minimum duration of KillTimeout parameter 2.4.4, 2.4.5, 3.3.1
A.1.24 Virtual device linking for Passport Readers 3.6.8.1, Appendix B
A.1.25 AEA barcode128 support for subtypes 128A, 128B, 128C Appendix D
A.1.26 AEA Bagtag color printing support 3.6.6
A.1.27 Dedicated single-app mode session start indication 2.4.4, 2.4.5

 CUSS 1.0 Addendum Reference

Revision 1.3, June 2013 431

A.1.28 Component realComponentName with regards to Table B.2 Appendix B
A.1.29 TCP/IP ports used by CUSS CORBA components 2.1.2
A.1.30 Behavior of akID input structure for level() directive 3.1.10
A.1.31 Use of notify() directive for STOPPED_INITIALIZE state change 2.4.1.2
A.1.32 Contents of correlation field in Event methods and fields 3.1.5, 3.1.11
A.1.33 Resolving conflicts between the IDL and the Documentation Appendix C
A.1.34 Architecture of MediaInput devices with multiple data types Chapter 6
A.1.35 Definition of CUSS 1.1 n/a
A.1.36 Clarification of Media behavior and Event sequence 3.7.2, 3.8
A.1.37 Behavior of components that depend on a linked component 3.2.3, 3.6.8.2
A.1.38 MEDIA_HIGH/FULL behavior of Dispenser components 3.6.11
A.1.39 Multiple documents in a single AEA data stream Appendix D
A.1.40 Support for HTTP/1.1 protocol for browser-based applications Appendix E
A.1.41 Behavior of multiple receive() directives after DATA_PRESENT 3.6.8.1
A.1.42 Tracking why an application is not in AVAILABLE state 2.4.4, 2.4.5
A.1.43 What barcodes does a MediaInput component support (PDF417, etc) Chapter 6
A.1.44 Dispenser type clarification (to user, or internal feeder) 5.6
A.1.45 Amendment to A.1.34 – devices with multiple data types Chapter 6
A.1.46 Virtual components for multiple physical bins with identical stock Appendix G
A.1.47 Application query of the version of the CUSS platform 3.3.1.1
A.1.48 How to identify a kiosk that is an offsite (non-airport) location 3.3.1.2
A.1.49 Support for numbered (controlled) documents Appendix G
A.1.50 Allow an ACTIVE application to transfer control to another app 2.4.4, 2.4.5
A.1.51 Clarification to BoardingPass, Ticket and General Purpose stock Appendix G
A.1.52 What software components can an application use on a kiosk? Appendix E

 CUSS 1.0 Addendum Reference

Revision 1.3, June 2013 432

Appx K: CUSS Technical Specification Files

The entire CUSS Technical Specification includes this document and separate files. Together, all
files define the current version of the CUSS technical specification. At time of publication, all
individual files of the CUSS Technical Specification are available at this URL:

https://extranet2.iata.org/sites/pemg/common-use-wg/Lists/Links/AllItems.aspx

Complete File List:

IATA_CommonUseSelfService_TechnicalSpec_May2013_CUSS_1.3.pdf

IATA_CommonUseSelfService_CUSS_1.3_errata.pdf
IATA CUSS Spec_Certification_1.0-rev1.1.pdf

characteristics.idl
codes.idl
comps.idl
types.idl

CUSS.PAYMENT.XSD
CUSS.SBD.XSD

Common Use Self Service (CUSS) Technical Specification (PDF)

IATA_CommonUseSelfService_TechnicalSpec_May2013_CUSS_1.3.pdf

• Description of the behavior, environment, and requirements for CUSS compliant
kiosk enclosures, platform/middleware software, and end user applications

• This document

CUSS Technical Specification Errata (PDF)

IATA_CommonUseSelfService_CUSS_1.3_errata.pdf

• List of corrections, amendments, addendums, and other changes to the CUSS
Technical Specification

 CUSS 1.0 Addendum Reference

Revision 1.3, June 2013 433

• Changes in this document are agreed upon by the CUSS Technical Solution Group to
provide clarity to the current pblished CUSS technical specification prior to
publication of the next version

• This document may also contain updates to the Tools & Technologies list for CUSS

applications, should any such change be agreed by the CUSS Technical Solution
Group

• This document may also contain updates to the messaging schema XSD files, should

any such change be agreed by the CUSS Technical Solution Group

• The content of this errata document takes priority over any content in the other

documents of the CUSS Technical Specification.

CUSS Interface Definition Language (IDL):

characteristics.idl
codes.idl
comps.idl
types.idl

• This list of requirements and verification cases that CUSS platforms and CUSS

applications can perform to self-certify a basic technical compliance with the CUSS
Technical Specification

• The certification testing in this document is limited to tbe base minimum
requirements for operating a technically compliant application using the platform
interfaces. It does not include any detail regarding application or platform
architecture, design, performance, suitability, or business logic.

CUSS Payment Interface Messaging Schema (XSD):

CUSS.PAYMENT.XSD

• Defines the message format for payment transaction requests and responses between
the CUSS application and the CUSS platform.

• The schema defines messages for payment requests, transactions results, itinerary
information, and user transaction progress.

• XML messages encoded in accordance with this schema are distributed by CUSS
internface requests such as send(), receive(), and asynchronous event notification.

 CUSS 1.0 Addendum Reference

Revision 1.3, June 2013 434

CUSS Self Bag Drop Messaging Schema (XSD):

CUSS.SBD.XSD

• Defines the message format for self bag drop transaction requests and responses
between the CUSS application and the CUSS platform, when the application has
chose to use the CUSS-SBD component interfaces.

• The schema includes information about weight, bag dimensions, RFID tags, and other
baggage-related information.

• XML messages encoded in accordance with this schema are distributed by CUSS
internface requests such as send(), receive(), and asynchronous event notification.

CUSS Technical Specifications: Certification Criteria

IATA CUSS Spec_Certification_1.0-rev1.1.pdf

• The technical interface definitions of the CUSS Technical Specification, in CORBA
Interface Definition Language (IDL) files.

• These definition files are used by platform and application suppliers to create
interface layers using CORBA technologies, in their platforms and applications.

 Glossary of Terms

Revision 1.3, June 2013 435

Glossary of Terms

AEA Association of European Airlines
AL Application CUSS Kiosk Airline Application
AL SM Airline Application Provider System Manager (as defined in CUSS)
AL Airline
AMI Application Manager Interface (as defined in CUSS)
ANSI American National Standards Institute
ASCII American Standard Code for Information Interchange
ATA American Transport Association
ATB Automatic Ticketing and Boarding
ATM Automated Teller Machine
AVI Audio Video Interleaved
BMP Bitmap (file name extension)
BP Boarding Pass
BTP Bag Tag Printer
CAM CUSS Application Manager
CDROM Compact Disk Read Only Memory
CLA Common Launch Application (as defined in CUSS)
CORBA Common Object Request Broker Architecture (by OMG)
CUSS Common User Self Service standard (by IATA)
CUSSMG CUSS Management Group (replaced by PEMG)PEMG
 Passenger Experience Management Group (replaces CUSSMG)
DCI Device Component Interface (as defined in CUSS)
DVD Digital Video Disc
ELI Event Listener Interface (as defined in CUSS)
EMV Europay, Mastercard and Visa
GPP General Purpose Printer
GPS Global Positioning System
HTML Hyper Text Markup Language (by W3C)
IATA International Air Transport Association
IDL Interface Definition Language
IEC International Electrotechnical Commission.
IIOP Internet Inter-ORB Protocol
IJG Independent JPEG Group
IOR Interoperable Object Reference
IP Internet Protocol
ISO International Organization for Standardization
JFIF JPEG File Interchange Format (file name extension)
JIS Japanese Industrial Standard
JPEG Joint Photographic Experts Group (also file name extension)
JVM Java Virtual Machine
LED Light -Emitting Diode
MIF Management Interface (as defined in CUSS)

 Glossary of Terms

Revision 1.3, June 2013 436

MPEG Moving Picture Experts Group (also file name extension)
NC Network Computer
OCR Optical Character Reader
OMG Object Management Group
ORB Object Request Broker
PC Personal Computer
PDF Portable Document Format (By Adobe)
PECTAB ParamEtriC TABle (by AEA)
PIN Personal Identification Number
PNG Portable Network Graphics (graphic file standard/extension)
PP Platform Provider
RF Radio Frequency
RFC Request For Comment
RP Recommended Practise (IATA)
SLA Service Level Agreement
SM System Manager
SMI System Manager Interface (as defined in CUSS)
SP Service Provider
SVG Scalable Vector Graphics
TAT Transitional Automated Ticket
TCP Transmission Control Protocol
TVM Ticket Vending Machine
UPS Uninterruptible Power Supply
UTF Unicode Transformation Format
VPN Virtual Private Network
W3C World Wide Web Consortium
XHTML Extensible Hypertext Markup Language
XML eXtensible Markup Language (By W3C)

